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1. The prevailing now BCS-theory is based on the phonon mechanism. The impetus for
its development was the discovery of the isotope-effect in superconductors. As it has been
observed, this effect (for some superconductors) has the same dependence on the mass of
the isotope as the cut-off frequency of phonon spectrum.

It was found later that the zero-point oscillations of ions in the crystal lattice of metals
are anharmonic. Therefore, the isotopic substitution leads to a change in the interatomic
distances in the lattice, to a change in the density of the electron gas and hence to a change
in the Fermi energy of the metal.

That was not known during the creation of the BCS-theory.

2. Conduction electrons in the metal are in a potential well. One must act photons or
by heating, to pull them out from this well. The lowest level in the well is the level of
zero-point oscillations. Quantum mechanics requires from particles at the lowest level to
make these oscillations.

At a sufficiently low temperature, electrons form pairs. The mechanism of formation
of these bosons does not matter. It is important that this mechanism began its work above
the critical temperature of superconductor. At low temperature all bosons are collected
at the lowest level and all have the same energy. That means that they have the same
frequencies and amplitudes of zero-point oscillations.

But pairs of the same energy can have different phases and orientation (polarization)
of the zero-point oscillations. If the temperature is not low enough (above the interaction
energy of steam), the interaction between them can be neglected. At that the oscillating
with different phases and polarizations pairs will be described by different wave functions.
They are not identical.

3. Due to the fact that the charged particles oscillate, there is an interaction between
them. At sufficiently low temperatures, this interaction leads to a kind of ordered structure
of zero-point oscillations at which due to their mutual attraction their energy decreases.
As a result, this attraction forms a superconducting condensate, which is not scattered by



Annotation

the defects, if the scattering energy is less than the energy of attraction.

4. Calculations show that the ratio of the critical temperature of formation of such
condensate to the metal Fermi temperature:

Tc
TF
' 5πα3 ' 6 · 10−6 (1)

(where α is the fine structure constant).

The critical magnetic field in this model is a field that destroys the coherence of the
zero-point oscillations of the particles of the condensate.

These results of calculations are in good agreement with measured data for all
superconductors.

It is appropriate to emphasize that the BCS-theory there are no workable formula that
determines the specific critical parameters of superconductors.

5. Zero-point oscillations of shells of neutral atoms in the s-state were considered
by F.London (in 1937). He showed that the helium atoms arrange the oscillations of their
shells at about 4K. This ordering is energetically favorable, since in this case the attraction
arises between atoms. He paid no attention, that only one oscillation mode is ordered at
this temperature. But this is enough for the helium liquefaction as a repulsion is absent in
the gas of neutral bosons.

The complete arrangement appears at twice less temperature. The calculation shows
that the temperature of complete ordering of zero-point oscillations depends on the
universal constants only:

T0 =
1

3

M4c
2α6

k
= 2.177K. (2)

This value is a very good agreement with the measured value of the superfluid transition
temperature Tλ = 2.172K. This difference in the 4 digits may occur because of the
inaccuracy of the calibration of thermometers, which are very difficult in this temperature
range.

Also in this case it is possible to calculate the density of the superfluid condensate in
liquid helium. It turns out that the density of particles in the condensate, as well as T0,
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depends on the ratio universal constants only:

n0 =
α2

a3
B

√
M4

2me

∼= 2.172 · 1022 atom/cm3. (3)

(where aB is the Bohr radius).

Since all helium atoms pass into condensate at a low temperature, then it is possible to
calculate the density of the liquid helium:

γ4 = n0M4
∼= 0.1443 g/cm3, (4)

which agrees well with the measured density of liquid helium equal to 0.145 g/cm3.

It should be emphasized that the above formulas are derived from the consideration of
the mechanism of zero-point oscillations ordering and they were not known previously.

6. Thus the consent of the above formulas with the measurement data clearly shows
that both - superconductivity and superfluidity - are the result of the work of the same
mechanism - both of these related phenomena occur as a result of ordering zero-point
oscillations.
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