Chapter 2

Zweier I-Convergent Sequence Spaces

"In most sciences one generation tears down what another has built and what one has established another undoes. In mathematics alone each generation builds a new story to the old structure."- Hankel.

2.1 Introduction

Let l_{∞} , c and c_0 denote the Banach spaces of bounded, convergent and null sequences respectively normed by $||x||_{\infty} = \sup_{k \to \infty} |x_k|$.

Each linear subspace of ω , for example, $\lambda, \mu \subset \omega$ is called a sequence space.

A sequence space X with linear topology is called a K-space provided each of maps $p_i : X \longrightarrow \mathbb{C}$ defined by $p_i(x) = x_i$ is continuous for all $i \in \mathbb{N}$.

A K-space λ is called an FK-space provided λ is a complete linear metric space.

An FK-space whose topology is normable is called a BK-space.

Let λ and μ be two sequence spaces and $A = (a_{nk})$ is an infinite matrix of real or complex numbers (a_{nk}) , where $n, k \in \mathbb{N}$. Then we say that Adefines a matrix mapping from λ to μ , and we denote it by writing $A : \lambda \longrightarrow \mu$.

If for every sequence $x = (x_k) \in \lambda$ the sequence $Ax = \{(Ax)_n\}$, the A transform of x is in μ , where

$$(Ax)_n = \sum_k a_{nk} x_k, \quad (n \in \mathbb{N}).$$

$$[2.1]$$

By $(\lambda : \mu)$, we denote the class of matrices A such that $A : \lambda \longrightarrow \mu$. Thus, $A \in (\lambda : \mu)$ if and only if series on the right side of [2.1] converges for each $n \in \mathbb{N}$ and every $x \in \lambda$.

The approach of constructing new sequence spaces by means of the

matrix domain of a particular limitation method have been recently employed by Altay,Başar and Mursaleen[1], Başar and Altay[3], Malkowsky[57], Ng and Lee[59], and Wang[74]. Şengönül[68] defined the sequence $y = (y_i)$ which is frequently used as the Z^p transform of the sequence $x = (x_i)$ i.e,

$$y_i = px_i + (1 - p)x_{i-1}$$

where $x_{-1} = 0, p \neq 1, 1 and <math>Z^p$ denotes the matrix $Z^p = (z_{ik})$ defined by

$$z_{ik} = \begin{cases} p, & (i = k), \\ 1 - p, & (i - 1 = k); (i, k \in \mathbb{N}), \\ 0, & \text{otherwise.} \end{cases}$$

Following Başar and Altay[3], Şengönül[68] introduced the Zweier sequence spaces Z and Z_0 as follows

$$\mathcal{Z} = \{ x = (x_k) \in \omega : Z^p x \in c \}$$
$$\mathcal{Z}_0 = \{ x = (x_k) \in \omega : Z^p x \in c_0 \}.$$

Here we list below some of the results of [68] which we will need as a reference in order to establish analogously some of the results of this article.

Theorem 2.1.1. [68, Theorem 2.1] The sets \mathcal{Z} and \mathcal{Z}_0 are the linear spaces with the co-ordinate wise addition and scalar multiplication which are the BK-spaces with the norm

$$||x||_{\mathcal{Z}} = ||x||_{\mathcal{Z}_0} = ||Z^p x||_c.$$

Theorem 2.1.2. [68, Theorem 2.2] The sequence spaces \mathcal{Z} and \mathcal{Z}_0 are linearly isomorphic to the spaces c and c_0 respectively, i.e $\mathcal{Z} \cong c$ and $\mathcal{Z}_0 \cong c_0$ [See (Theorem 2.2.[18])]

Theorem 2.1.3. [68, Theorem 2.3] The inclusions $\mathcal{Z}_0 \subset \mathcal{Z}$ strictly hold for $p \neq 1$.

Theorem 2.1.4. [68, Theorem 2.6] \mathcal{Z}_0 is solid.

Theorem 2.1.5. [68, Theorem 3.6] \mathcal{Z} is not a solid sequence space.

The following Lemmas will be used for establishing some results of this article.

Lemma 2.1.6. Let E be a sequence space. If E is solid then E is monotone. (see [20], page 53).

Lemma 2.1.7. If $I \subset 2^{\mathbb{N}}$ and $M \subseteq \mathbb{N}$. If $M \notin I$, then $M \cap \mathbb{N} \notin I$. (see [71-72]).

2.2 Main Results

In this chapter we introduce the following classes of sequence spaces.

$$\mathcal{Z}^{I} = \{x = (x_{k}) \in \omega : \{k \in \mathbb{N} : I - \lim Z^{p}x = L, \text{ for some } \mathbf{L} \in \mathbb{C}\} \in I\}$$
$$\mathcal{Z}^{I}_{0} = \{x = (x_{k}) \in \omega : \{k \in \mathbb{N} : I - \lim Z^{p}x = 0\} \in I\}$$
$$\mathcal{Z}^{I}_{\infty} = \{x = (x_{k}) \in \omega : \sup_{k} |Z^{p}x| < \infty\}.$$

We also denote by

$$m_{\mathcal{Z}}^{I} = \mathcal{Z}_{\infty} \cap \mathcal{Z}^{I}$$

and

$$m_{\mathcal{Z}_0}^I = \mathcal{Z}_\infty \cap \mathcal{Z}_0^I$$

Throughout the article, for the sake of convenience now we will denote by $Z^p(x_k) = x^{/}, Z^p(y_k) = y^{/}, Z^p(z_k) = z^{/}$ for $x, y, z \in \omega$. Zweier I-Convergent Sequence Spaces and Their Properties

Theorem 2.2.1. The classes of sequences Z^I, Z_0^I, m_Z^I and $m_{Z_0}^I$ are linear spaces.

Proof. We shall prove the result for the space \mathcal{Z}^I . The proof for the other spaces will follow similarly. Let $(x_k), (y_k) \in \mathcal{Z}^I$ and let α, β be scalars. Then

$$I - \lim |x'_k - L_1| = 0$$
, for some $L_1 \in \mathbb{C}$;
 $I - \lim |y'_k - L_2| = 0$, for some $L_2 \in \mathbb{C}$;

That is for a given $\epsilon > 0$, we have

$$A_1 = \{k \in \mathbb{N} : |x_k' - L_1| > \frac{\epsilon}{2}\} \in I,$$
[2.2]

$$A_2 = \{k \in \mathbb{N} : |y_k' - L_2| > \frac{\epsilon}{2}\} \in I.$$
[2.3]

we have

$$|(\alpha x_k' + \beta y_k') - (\alpha L_1 + \beta L_2)| \le |\alpha|(|x_k' - L_1|) + |\beta|(|y_k' - L_2|) \le |x_k' - L_1| + |y_k' - L_2|$$

Now, by [2.2] and [2.3], $\{k \in \mathbb{N} : |(\alpha x_k^{\prime} + \beta y_k^{\prime}) - (\alpha L_1 + \beta L_2)| > \epsilon\}$ $\subset A_1 \cup A_2$. Therefore $(\alpha x_k + \beta y_k) \in \mathcal{Z}^I$

Hence \mathcal{Z}^I is a linear space.

Theorem 2.2.2. The spaces $m_{\mathcal{Z}}^I$ and $m_{\mathcal{Z}_0}^I$ are normed linear spaces, normed by

$$||x_k'||_* = \sup_k |Z^p(x)|.$$
 [2.4]

where $x_k^{/} = Z^p(x)$

Proof. It is clear from Theorem 2.2.1 that $m_{\mathcal{Z}}^I$ and $m_{\mathcal{Z}_0}^I$ are linear spaces. It is easy to verify that [2.4] defines a norm on the spaces $m_{\mathcal{Z}}^I$ and $m_{\mathcal{Z}_0}^I$. Theorem 2.2.3. A sequence $x = (x_k) \in m_{\mathcal{Z}}^I$ I-converges if and only if for every $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}$ such that

$$\{k \in \mathbb{N} : |x_k' - x_{N_\epsilon}'| < \epsilon\} \in m_{\mathcal{Z}}^I$$

$$[2.5]$$

Proof. Suppose that $L = I - \lim x^{/}$. Then

$$B_{\epsilon} = \{k \in \mathbb{N} : |x_k^{/} - L| < \frac{\epsilon}{2}\} \in m_{\mathcal{Z}}^I \text{ for all } \epsilon > 0.$$

Fix an $N_{\epsilon} \in B_{\epsilon}$. Then we have

$$|x_{N_{\epsilon}}' - x_{k}'| \le |x_{N_{\epsilon}}' - L| + |L - x_{k}'| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

which holds for all $k \in B_{\epsilon}$.

Hence
$$\{k \in \mathbb{N} : |x_k' - x_{N_{\epsilon}}'| < \epsilon\} \in m_{\mathcal{Z}}^I$$
.

Conversely, suppose that $\{k \in \mathbb{N} : |x'_k - x'_{N_{\epsilon}}| < \epsilon\} \in m_{\mathcal{Z}}^I$. That is $\{k \in \mathbb{N} : |x'_k - x'_{N_{\epsilon}}| < \epsilon\} \in m_{\mathcal{Z}}^I$ for all $\epsilon > 0$. Then the set

$$C_{\epsilon} = \{k \in \mathbb{N} : x_k^{\prime} \in [x_{N_{\epsilon}}^{\prime} - \epsilon, x_{N_{\epsilon}}^{\prime} + \epsilon]\} \in m_{\mathcal{Z}}^I \text{ for all } \epsilon > 0.$$

Let $J_{\epsilon} = [x'_{N_{\epsilon}} - \epsilon, x'_{N_{\epsilon}} + \epsilon]$. If we fix an $\epsilon > 0$ then we have $C_{\epsilon} \in m_{\mathcal{Z}}^{I}$ as well as $C_{\frac{\epsilon}{2}} \in m_{\mathcal{Z}}^{I}$. Hence $C_{\epsilon} \cap C_{\frac{\epsilon}{2}} \in m_{\mathcal{Z}}^{I}$. This implies that

$$J = J_{\epsilon} \cap J_{\frac{\epsilon}{2}} \neq \phi$$

that is

$$\{k \in \mathbb{N} : x_k^{/} \in J\} \in m_{\mathcal{Z}}^I$$

that is

$$diamJ \leq diamJ_{\epsilon}$$

where the diam of J denotes the length of interval J. In this way, by induction we get the sequence of closed intervals

$$J_{\epsilon} = I_0 \supseteq I_1 \supseteq \dots \supseteq I_k \supseteq \dots$$

with the property that $diamI_k \leq \frac{1}{2}diamI_{k-1}$ for (k=2,3,4,....) and $\{k \in \mathbb{N} : x_k^{/} \in I_k\} \in m_{\mathcal{Z}}^I$ for (k=1,2,3,4,....). Then there exists a $\xi \in \cap I_k$ where $k \in \mathbb{N}$ such that $\xi^{/} = I - \lim x^{/}$, that is $L = I - \lim x^{/}$.

Theorem 2.2.4. Let I be an admissible ideal. Then the following are equivalent.

- (a) $(x_k) \in \mathcal{Z}^I$;
- (b) there exists $(y_k) \in \mathbb{Z}$ such that $x_k = y_k$, for a.a.k.r.I;
- (c) there exists $(y_k) \in \mathbb{Z}$ and $(z_k) \in \mathbb{Z}_0^I$ such that $x_k = y_k + z_k$ for all $k \in \mathbb{N}$ and $\{k \in \mathbb{N} : |y_k L| \ge \epsilon\} \in I$;
- (d) there exists a subset $K = \{k_1 < k_2....\}$ of \mathbb{N} such that $K \in \mathcal{L}(I)$ and $\lim_{n \to \infty} |x_{k_n} L| = 0.$

Proof. (a) implies (b). Let $(x_k) \in \mathbb{Z}^I$. Then there exists $L \in \mathbb{C}$ such that

$$\{k \in \mathbb{N} : |x_k^{/} - L| \ge \epsilon\} \in I.$$

Let (m_t) be an increasing sequence with $m_t \in \mathbb{N}$ such that

$$\{k \le m_t : |x_k' - L| \ge \frac{1}{t}\} \in I.$$

Define a sequence (y_k) as

$$y_k = x_k$$
, for all $k \le m_1$.

For $m_t < k \leq m_{t+1}, t \in \mathbb{N}$.

$$y_k = \begin{cases} x_k, & \text{if } |x_k^{/} - L| < t^{-1}, \\ L, & \text{otherwise.} \end{cases}$$

Then $(y_k) \in \mathcal{Z}$ and form the following inclusion

$$\{k \le m_t : x_k \ne y_k\} \subseteq \{k \le m_t : |x_k' - L| \ge \epsilon\} \in I.$$

We get $x_k = y_k$, for a.a.k.r.I.

(b) implies (c). For $(x_k) \in \mathbb{Z}^I$. Then there exists $(y_k) \in \mathbb{Z}$ such that $x_k = y_k$, for a.a.k.r.I. Let $K = \{k \in \mathbb{N} : x_k \neq y_k\}$, then $K \in I$. Define a sequence (z_k) as

$$z_k = \begin{cases} x_k - y_k, & \text{if } k \in K, \\ 0, & \text{otherwise.} \end{cases}$$

Then $z_k \in \mathcal{Z}_0^I$ and $y_k \in \mathcal{Z}$.

(c) implies (d). Let $P_1 = \{k \in \mathbb{N} : |z_k| \ge \epsilon\} \in I$ and

$$K = P_1^c = \{k_1 < k_2 < k_3 < \dots\} \in \pounds(I).$$

Then we have $\lim_{n \to \infty} |x_{k_n} - L| = 0.$

(d) implies (a). Let $K = \{k_1 < k_2 < k_3 < ...\} \in \mathcal{L}(I)$ and $\lim_{n \to \infty} |x_{k_n} - L| = 0$. Then for any $\epsilon > 0$, and Lemma , we have

$$\{k \in \mathbb{N} : |x_k' - L| \ge \epsilon\} \subseteq K^c \cup \{k \in K : |x_k' - L| \ge \epsilon\}.$$

Thus $(x_k) \in \mathcal{Z}^I$.

Theorem 2.2.5. The inclusions $\mathcal{Z}_0^I \subset \mathcal{Z}^I \subset \mathcal{Z}_\infty^I$ are proper.

Proof. Let $(x_k) \in \mathbb{Z}^I$. Then there exists $L \in \mathbb{C}$ such that

$$I - \lim |x_k' - L| = 0$$

We have $|x_k^{\prime}| \leq \frac{1}{2}|x_k^{\prime} - L| + \frac{1}{2}|L|$. Taking the supremum over k on both sides we get $(x_k) \in \mathcal{Z}_{\infty}^I$. The inclusion $\mathcal{Z}_0^I \subset \mathcal{Z}^I$ is obvious.

Theorem 2.2.6. The function $\hbar: m_{\mathcal{Z}}^I \to \mathbb{R}$ is the Lipschitz function, where

 $m_{\mathcal{Z}}^{I} = \mathcal{Z}^{I} \cap \mathcal{Z}_{\infty}$, and hence uniformly continuous.

Proof. Let $x, y \in m_{\mathcal{Z}}^{I}$, $x \neq y$. Then the sets

$$A_x = \{k \in \mathbb{N} : |x'_k - \hbar(x')| \ge ||x' - y'||_*\} \in I,$$

$$A_y = \{k \in \mathbb{N} : |y'_k - \hbar(y')| \ge ||x' - y'||_*\} \in I.$$

Thus the sets,

$$B_x = \{k \in \mathbb{N} : |x_k^{/} - \hbar(x^{/})| < ||x^{/} - y^{/}||_*\} \in m_{\mathcal{Z}}^I,$$
$$B_y = \{k \in \mathbb{N} : |y_k^{/} - \hbar(y^{/})| < ||x^{/} - y^{/}||_*\} \in m_{\mathcal{Z}}^I.$$

Hence also $B = B_x \cap B_y \in m_{\mathcal{Z}}^I$, so that $B \neq \phi$. Now taking k in B, $|\hbar(x') - \hbar(y')| \le |\hbar(x') - x'_k| + |x'_k - y'_k| + |y' - \hbar(y')| \le 3||x' - y'||_*.$

Thus \hbar is a Lipschitz function. For $m_{\mathcal{Z}_0}^I$ the result can be proved similarly.

Theorem 2.2.7. If $x, y \in m_{\mathcal{Z}}^{I}$, then $(x.y) \in m_{\mathcal{Z}}^{I}$ and $\hbar(xy) = \hbar(x)\hbar(y)$.

Proof. For $\epsilon > 0$

$$B_x = \{k \in \mathbb{N} : |x' - \hbar(x')| < \epsilon\} \in m_{\mathcal{Z}}^I,$$
$$B_y = \{k \in \mathbb{N} : |y' - \hbar(y')| < \epsilon\} \in m_{\mathcal{Z}}^I.$$

Now,

$$|x'.y' - \hbar(x')\hbar(y')| = |x'.y' - x'\hbar(y') + x'\hbar(y') - \hbar(x')\hbar(y')|$$

$$\leq |x'||y' - \hbar(y')| + |\hbar(y')||x' - \hbar(x')| \qquad [2.6]$$

As $m_{\mathcal{Z}}^I \subseteq \mathcal{Z}_{\infty}$, there exists an $M \in \mathbb{R}$ such that |x'| < M and $|\hbar(y')| < M$. Using eqn[2.6] we get

$$|x'.y' - \hbar(x')\hbar(y')| \le M\epsilon + M\epsilon = 2M\epsilon$$

For all $k \in B_x \cap B_y \in m_{\mathcal{Z}}^I$. Hence $(x.y) \in m_{\mathcal{Z}}^I$ and $\hbar(xy) = \hbar(x)\hbar(y)$. For $m_{\mathcal{Z}_0}^I$ the result can be proved similarly.

Theorem 2.2.8. The spaces \mathcal{Z}_0^I and $m_{\mathcal{Z}_0}^I$ are solid and monotone .

Proof. We shall prove the result for \mathcal{Z}_0^I . Let $(x_k) \in \mathcal{Z}_0^I$. Then

$$I - \lim_{k} |x_{k}'| = 0$$
 [2.7]

Let (α_k) be a sequence of scalars with $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$. Then the result follows from [2.7] and the following inequality $|\alpha_k x_k^{/}| \leq |\alpha_k| |x_k^{/}| \leq |x_k^{/}|$ for all $k \in \mathbb{N}$. That the space \mathcal{Z}_0^I is monotone follows from the Lemma 2.1.6. For $m_{\mathcal{Z}_0}^I$ the result can be proved similarly.

Theorem 2.2.9. The spaces Z^I and m_Z^I are neither monotone nor solid, if I is neither maximal nor $I = I_f$ in general.

Proof. Here we give a counter example. Let $I = I_{\delta}$. Consider the K-step space X_K of X defined as follows, Let $(x_k) \in X$ and let $(y_k) \in X_K$ be such that

$$(y'_k) = \begin{cases} (x'_k), & \text{if } \mathbf{k} \text{ is odd,} \\ 1, & otherwise. \end{cases}$$

Consider the sequence $(x_k^{/})$ defined by $(x_k^{/}) = k^{-1}$ for all $k \in \mathbb{N}$. Then $(x_k) \in \mathbb{Z}^I$ but its K-stepspace preimage does not belong to \mathbb{Z}^I . Thus \mathbb{Z}^I is not monotone. Hence \mathbb{Z}^I is not solid.

Theorem 2.2.10. The spaces \mathcal{Z}^I and \mathcal{Z}_0^I are sequence algebras.

Zweier I-Convergent Sequence Spaces and Their Properties

Proof. We prove that \mathcal{Z}_0^I is a sequence algebra. Let $(x_k), (y_k) \in \mathcal{Z}_0^I$. Then

$$I - \lim |x_k| = 0$$

and

$$I - \lim |y_k| = 0$$

Then we have

$$I - \lim |(x_k' \cdot y_k')| = 0$$

Thus $(x_k.y_k) \in \mathcal{Z}_0^I$. Hence \mathcal{Z}_0^I is a sequence algebra. For the space \mathcal{Z}^I , the result can be proved similarly.

Theorem 2.2.11. The spaces \mathcal{Z}^I and \mathcal{Z}^I_0 are not convergence free in general.

Proof. Here we give a counter example. Let $I = I_f$. Consider the sequence (x'_k) and (y'_k) defined by

$$x_k^{\prime} = rac{1}{k} \; ext{ and } \; y_k^{\prime} = k \; ext{ for all } k \in \mathbb{N}$$

Then $(x_k) \in \mathcal{Z}^I$ and \mathcal{Z}_0^I , but $(y_k) \notin \mathcal{Z}^I$ and \mathcal{Z}_0^I . Hence the spaces \mathcal{Z}^I and \mathcal{Z}_0^I are not convergence free.

Theorem 2.2.12. If I is not maximal and $I \neq I_f$, then the spaces \mathcal{Z}^I and \mathcal{Z}_0^I are not symmetric.

Proof. Let $A \in I$ be infinite. If

$$x'_{k} = \begin{cases} 1, & \text{for } k \in A, \\ 0, & otherwise. \end{cases}$$

Then by lemma 1.16. $x_k \in \mathbb{Z}_0^I \subset \mathbb{Z}^I$. Let $K \subset \mathbb{N}$ be such that $K \notin I$ and $\mathbb{N} - K \notin I$. Let $\phi : K \to A$ and $\psi : \mathbb{N} - K \to \mathbb{N} - A$ be bijections, then the map $\pi:\mathbb{N}\to\mathbb{N}$ defined by

$$\pi(k) = \begin{cases} \phi(k), & \text{for } k \in K, \\ \psi(k), & otherwise. \end{cases}$$

is a permutation on \mathbb{N} , but $x_{\pi(k)} \notin \mathbb{Z}^I$ and $x_{\pi(k)} \notin \mathbb{Z}^I_0$. Hence \mathbb{Z}^I and \mathbb{Z}^I_0 are not symmetric.

Theorem 2.2.13. The sequence spaces \mathcal{Z}^I and \mathcal{Z}_0^I are linearly isomorphic to the spaces c^I and c_0^I respectively, i.e $\mathcal{Z}^I \cong c^I$ and $\mathcal{Z}_0^I \cong c_0^I$.

Proof. We shall prove the result for the space Z^I and c^I . The proof for the other spaces will follow similarly. We need to show that there exists a linear bijection between the spaces Z^I and c^I . Define a map $T : Z^I \longrightarrow c^I$ such that $x \to x^I = Tx$

$$T(x_k) = px_k + (1-p)x_{k-1} = x'_k$$

where $x_{-1} = 0, p \neq 1, 1 . Clearly T is linear. Further, it is trivial that <math>x = 0 = (0, 0, 0,)$ whenever Tx = 0 and hence injective. Let $x'_k \in c^I$ and define the sequence $x = x_k$ by

$$x_k = M \sum_{i=0}^k (-1)^{k-i} N^{k-i} x_i^{\prime}. \quad (i \in \mathbb{N})$$

where $M = \frac{1}{p}$ and $N = \frac{1-p}{p}$. Then we have

$$\lim_{k \to \infty} px_k + (1-p)x_{k-1} = p \lim_{k \to \infty} M \sum_{i=0}^k (-1)^{k-i} N^{k-i} x_i^{i} +$$

$$(1-p)\lim_{k \to \infty} M \sum_{i=0}^{k-1} (-1)^{k-i} N^{k-i} x_i^{\prime} = \lim_{k \to \infty} x_k^{\prime}$$

which shows that $x \in \mathbb{Z}^I$.

Zweier I-Convergent Sequence Spaces and Their Properties

Hence T is a linear bijection. Also we have $||x||_* = ||Z^p x||_c$. Therefore

$$||x||_* = \sup_{k \in \mathbb{N}} |px_k + (1-p)x_{k-1}|$$

=
$$\sup_{k \in \mathbb{N}} |pM\sum_{i=0}^k (-1)^{k-i} N^{k-i} x_i^{/} + (1-p)M\sum_{i=0}^{k-1} (-1)^{k-i} N^{k-i} x_i^{/}|$$

=
$$\sup_{k \in \mathbb{N}} |x_k^{/}| = ||x^{/}||_{c^I}$$

Hence $\mathcal{Z}^I \cong c^I$.