Chapter 5

On Some Zweier I-Convergent Sequence Spaces Defined by a Modulus Function

[&]quot;Good mathematicians see analogies between theorems or theories, the very best ones see analogies between analogies"- Banach.

5.1 Introduction

Ruckle[62-64] used the idea of a modulus function f to construct the sequence space

$$X(f) = \{x = (x_k) : \sum_{k=1}^{\infty} f(|x_k|) < \infty\}.$$

This space is an FK space, and Ruckle[62] proved that the intersection of all such X(f) spaces is ϕ , the space of all finite sequences. The space X(f) is closely related to the space ℓ_1 which is an X(f) space with f(x) = x for all real $x \ge 0$. Thus Ruckle[62-64] proved that, for any modulus f,

$$X(f) \subset \ell_1 \text{ and } X(f)^{\alpha} = \ell_{\infty}$$

where

$$X(f)^{\alpha} = \{y = (y_k) \in \omega : \sum_{k=1}^{\infty} f(|y_k x_k|) < \infty\}$$

The space X(f) is a Banach space with respect to the norm

$$||x|| = \sum_{k=1}^{\infty} f(|x_k|) < \infty.(\text{See}[62]).$$

Spaces of the type X(f) are a special case of the spaces structured by Gramsch in[16]. From the point of view of local convexity, spaces of the type X(f) are quite pathological. Therefore symmetric sequence spaces, which are locally convex have been frequently studied by Garling[14-15], Köthe[50], Kolk[51-52] and Ruckle[29-31].

In this chapter we introduce the following class of sequence spaces.

$$\mathcal{Z}^{I}(f) = \{(x_{k}) \in \omega : \text{there is } L \in \mathbb{C} \text{ such that}$$

for $\varepsilon > 0, \{k \in \mathbb{N} : f(|x_{k} - L|) \ge \varepsilon\} \in I\},$
$$\mathcal{Z}^{I}_{0}(f) = \{(x_{k}) \in \omega : \text{ for a given } \varepsilon > 0, \{k \in \mathbb{N} : f(|x_{k}|) \ge \varepsilon\} \in I\},$$

$$\mathcal{Z}^{I}_{\infty}(f) = \{(x_{k}) \in \omega : \{k \in \mathbb{N} : f(|x_{k}|) \ge M\} \in I, \text{ for each fixed } M>0\}$$

We also denote by

$$m_{\mathcal{Z}}^{I}(f) = \mathcal{Z}_{\infty}(f) \cap \mathcal{Z}^{I}(f)$$

and

$$m_{\mathcal{Z}_0}^I(f) = \mathcal{Z}_\infty(f) \cap \mathcal{Z}_0^I(f).$$

5.2 Main Results

Theorem 5.2.1. For any modulus function f, the classes of sequences $\mathcal{Z}^{I}(f), \mathcal{Z}^{I}_{0}(f), m^{I}_{\mathcal{Z}}(f)$ and $m^{I}_{\mathcal{Z}_{0}}(f)$ are linear spaces.

Proof. We shall prove the result for the space $\mathcal{Z}^{I}(f)$. The proof for the other spaces will follow similarly. Let $(x_k), (y_k) \in \mathcal{Z}^{I}(f)$ and let α, β be scalars. Then

$$I - \lim f(|x_k - L_1|) = 0, \text{ for some} L_1 \in \mathbb{C} ;$$

$$I - \lim f(|y_k - L_2|) = 0, \text{ for some} L_2 \in \mathbb{C} ;$$

That is for a given $\epsilon > 0$, we have

$$A_1 = \{k \in \mathbb{N} : f(|x_k - L_1|) > \frac{\epsilon}{2}\} \in I,$$
 [5.1]

$$A_2 = \{k \in \mathbb{N} : f(|y_k - L_2|) > \frac{\epsilon}{2}\} \in I.$$
 [5.2]

Since f is a modulus function, we have

$$f(|(\alpha x_k + \beta y_k) - (\alpha L_1 + \beta L_2)|) \le f(|\alpha||x_k - L_1|) + f(|\beta||y_k - L_2|)$$
$$\le f(|x_k - L_1|) + f(|y_k - L_2|)$$

Now, by [5.1] and [5.2], $\{k \in \mathbb{N}: f(|(\alpha x_k + \beta y_k) - (\alpha L_1 + \beta L_2)|) > \epsilon\}$ $\subset A_1 \cup A_2$. Therefore $(\alpha x_k + \beta y_k) \in \mathbb{Z}^I(f)$. Hence $\mathbb{Z}^I(f)$ is a linear space.

We state the following result without proof in view of Theorem 5.2.1.

Theorem 5.2.2. The spaces $m_{\mathcal{Z}}^{I}(f)$ and $m_{\mathcal{Z}_{0}}^{I}(f)$ are normed linear spaces, normed by

$$||x_k||_* = \sup_k f(|x_k|).$$
 [5.3]

Theorem 5.2.3. A sequence $x = (x_k) \in m_{\mathcal{Z}}^I(f)$ I-converges if and only if for every $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}$ such that

$$\{k \in \mathbb{N} : f(|x_k - x_{N_{\epsilon}}|) < \epsilon\} \in m_{\mathcal{Z}}^I(f).$$

$$[5.4]$$

Proof. Suppose that $L = I - \lim x$. Then

$$B_{\epsilon} = \{k \in \mathbb{N} : |x_k - L| < \frac{\epsilon}{2}\} \in m_{\mathcal{Z}}^I(f).$$
 For all $\epsilon > 0$.

Fix an $N_{\epsilon} \in B_{\epsilon}$. Then we have

$$|x_{N_{\epsilon}} - x_k| \le |x_{N_{\epsilon}} - L| + |L - x_k| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

which holds for all $k \in B_{\epsilon}$. Hence $\{k \in \mathbb{N} : f(|x_k - x_{N_{\epsilon}}|) < \epsilon\} \in m_{\mathcal{Z}}^I(f)$.

Conversely, suppose that $\{k \in \mathbb{N} : f(|x_k - x_{N_{\epsilon}}|) < \epsilon\} \in m_{\mathcal{Z}}^I(f)$. That is $\{k \in \mathbb{N} : (|x_k - x_{N_{\epsilon}}|) < \epsilon\} \in m_{\mathcal{Z}}^I(f)$ for all $\epsilon > 0$. Then the set

$$C_{\epsilon} = \{k \in \mathbb{N} : x_k \in [x_{N_{\epsilon}} - \epsilon, x_{N_{\epsilon}} + \epsilon]\} \in m_{\mathcal{Z}}^I(f) \text{ for all } \epsilon > 0.$$

Zweier I-Convergent Sequence Spaces and Their Properties

Let $J_{\epsilon} = [x_{N_{\epsilon}} - \epsilon, x_{N_{\epsilon}} + \epsilon]$. If we fix an $\epsilon > 0$ then we have $C_{\epsilon} \in m_{\mathcal{Z}}^{I}(f)$ as well as $C_{\frac{\epsilon}{2}} \in m_{\mathcal{Z}}^{I}(f)$. Hence $C_{\epsilon} \cap C_{\frac{\epsilon}{2}} \in m_{\mathcal{Z}}^{I}(f)$. This implies that

 $J_{\epsilon} \cap J_{\frac{\epsilon}{2}} \neq \phi$

that is

$$\{k \in \mathbb{N} : x_k \in J\} \in m_{\mathcal{Z}}^I(f)$$

that is

 $diamJ \leq diamJ_{\epsilon}$

where the diam of J denotes the length of interval J. In this way, by induction we get the sequence of closed intervals

 $J_{\epsilon} = I_0 \supseteq I_1 \supseteq \dots \supseteq Z_k \supseteq \dots$

with the property that $diamI_k \leq \frac{1}{2}diamI_{k-1}$ for (k=2,3,4,....) and $\{k \in \mathbb{N} : x_k \in I_k\} \in m_{\mathcal{Z}}^I(f)$ for (k=1,2,3,4,....). Then there exists a $\xi \in \cap I_k$ where $k \in \mathbb{N}$ such that $\xi = I - \lim x$. So that $f(\xi) = I - \lim f(x)$, that is $L = I - \lim f(x)$.

Theorem 5.2.4. Let f and g be modulus functions that satisfy the \triangle_2 -condition. If X is any of the spaces $\mathcal{Z}^I, \mathcal{Z}_0^I, m_{\mathcal{Z}}^I$ and $m_{\mathcal{Z}_0}^I$ etc, then the following assertions hold.

(a) $X(g) \subseteq X(f.g)$, (b) $X(f) \cap X(g) \subseteq X(f+g)$.

Proof. (a) Let $(x_k) \in \mathcal{Z}_0^I(g)$. Then

$$I - \lim_{k} g(|x_k|) = 0.$$
 [5.5]

Let $\epsilon > 0$ and choose δ with $0 < \delta < 1$ such that $f(t) < \epsilon$ for $0 < t < \delta$. Write $y_k = g(|x_k|)$ and consider $\lim_k f(y_k) = \lim_k f(y_k)_{y_k < \delta} + \lim_k f(y_k)_{y_k > \delta}$. We have

$$\lim_{k} f(y_k) \le f(2) \lim_{k} (y_k)$$

$$[5.6]$$

Chapter 5 On Some Zweier I-Convergent Sequence Spaces Defined by a Modulus Function

For $y_k > \delta$, we have $y_k < \frac{y_k}{\delta} < 1 + \frac{y_k}{\delta}$. Since f is non-decreasing, it follows that

$$f(y_k) < f(1 + \frac{y_k}{\delta}) < \frac{1}{2}f(2) + \frac{1}{2}f(\frac{2y_k}{\delta})$$

Since f satisfies the \triangle_2 -condition, we have

$$f(y_k) < \frac{1}{2}K\frac{y_k}{\delta}f(2) + \frac{1}{2}K\frac{y_k}{\delta}f(2) = K\frac{y_k}{\delta}f(2)$$

Hence

$$\lim_{k} f(y_k) \le \max(1, K)\delta^{-1}f(2)\lim_{k} (y_k).$$
 [5.7]

From [5.5], [5.6] and [5.7] we have $(x_k) \in \mathcal{Z}_0^I(f.g)$.

Thus $\mathcal{Z}_0^I(g) \subseteq \mathcal{Z}_0^I(f.g)$. The other cases can be proved similarly.

(b) Let $(x_k) \in \mathcal{Z}_0^I(f) \cap \mathcal{Z}_0^I(g)$. Then

$$I - \lim_{k} f(|x_k|) = 0 \text{ and } I - \lim_{k} g(|x_k|) = 0$$

The rest of the proof follows from the following equality

$$\lim_{k} (f+g)(|x_{k}|) = \lim_{k} f(|x_{k}|) + \lim_{k} g(|x_{k}|).$$

Corollary 5.2.5. $X \subseteq X(f)$ for $X = \mathcal{Z}^I, \mathcal{Z}_0^I, m_{\mathcal{Z}}^I$ and $m_{\mathcal{Z}_0}^I$.

Theorem 5.2.6. The spaces $\mathcal{Z}_0^I(f)$ and $m_{\mathcal{Z}_0}^I(f)$ are solid and monotone.

Proof. We shall prove the result for $\mathcal{Z}_0^I(f)$. Let $(x_k) \in \mathcal{Z}_0^I(f)$. Then

$$I - \lim_{k} f(|x_k|) = 0.$$
 [5.8]

Let (α_k) be a sequence of scalars with $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$. Then the result follows from [5.8] and the following inequality

$$f(|\alpha_k x_k|) \le |\alpha_k| f(|x_k|) \le f(|x_k|)$$
 for all $k \in \mathbb{N}$.

That the space $\mathcal{Z}_0^I(f)$ is monotone follows from the Lemma 5.1.1. For $m_{\mathcal{Z}_0}^I(f)$ the result can be proved similarly.

Theorem 5.2.7. The spaces $\mathcal{Z}^I(f)$ and $m^I_{\mathcal{Z}}(f)$ are neither solid nor monotone in general .

Proof. Here we give a counter example. Let $I = I_{\delta}$ and $f(x) = x^2$ for all $x \in [0, \infty)$. Consider the K-step space $X_K(f)$ of X defined as follows.

Let $(x_k) \in X$ and let $(y_k) \in X_K$ be such that

$$(y_k) = \begin{cases} (x_k), & \text{if } k \text{ is even,} \\ 0, & otherwise. \end{cases}$$

Consider the sequence (x_k) defined by $(x_k) = 1$ for all $k \in \mathbb{N}$. Then $(x_k) \in \mathcal{Z}^I(f)$ but its K-stepspace preimage does not belong to $\mathcal{Z}^I(f)$. Thus $\mathcal{Z}^I(f)$ is not monotone. Hence $\mathcal{Z}^I(f)$ is not solid.

Theorem 5.2.8. The spaces $\mathcal{Z}^{I}(f)$ and $\mathcal{Z}^{I}_{0}(f)$ are sequence algebras.

Proof. We prove that $\mathcal{Z}_0^I(f)$ is a sequence algebra. Let $(x_k), (y_k) \in \mathcal{Z}_0^I(f)$. Then

 $I - \lim f(|x_k|) = 0$

and

$$I - \lim f(|y_k|) = 0$$

Then we have

$$I - \lim f(|(x_k.y_k)|) = 0$$

Thus $(x_k.y_k) \in \mathcal{Z}_0^I(f)$ is a sequence algebra. For the space $\mathcal{Z}_0^I(f)$, the result can be proved similarly.

Chapter 5 On Some Zweier I-Convergent Sequence Spaces Defined by a Modulus Function

Theorem 5.2.9. The spaces $\mathcal{Z}^{I}(f)$ and $\mathcal{Z}_{0}^{I}(f)$ are not convergence free in general.

Proof. Here we give a counter example. Let $I = I_f$ and $f(x) = x^3$ for all $x \in [0, \infty)$. Consider the sequence (x_k) and (y_k) defined by

$$x_k = \frac{1}{k}$$
 and $y_k = k$ for all $k \in \mathbb{N}$

Then $(x_k) \in \mathcal{Z}^I(f)$ and $\mathcal{Z}_0^I(f)$, but $(y_k) \notin \mathcal{Z}^I(f)$ and $\mathcal{Z}_0^I(f)$. Hence the spaces $\mathcal{Z}_0^I(f)$ and $\mathcal{Z}_0^I(f)$ are not convergence free.

Theorem 5.2.10. If I is not maximal and $I \neq I_f$, then the spaces $\mathcal{Z}^I(f)$ and $\mathcal{Z}_0^I(f)$ are not symmetric.

Proof. Let $A \in I$ be infinite and f(x) = x for all $x \in [0, \infty)$. If

$$x_k = \begin{cases} 1, & \text{for } k \in A, \\ 0, & otherwise. \end{cases}$$

Then by lemma 1.22 $(x_k) \in \mathcal{Z}_0^I(f) \subset \mathcal{Z}^I(f)$. Let $K \subset \mathbb{N}$ be such that $K \notin I$ and $\mathbb{N} - K \notin I$. Let $\phi : K \to A$ and $\psi : \mathbb{N} - K \to \mathbb{N} - A$ be bijections, then the map $\pi : \mathbb{N} \to \mathbb{N}$ defined by

$$\pi(k) = \begin{cases} \phi(k), & \text{for } k \in K, \\ \psi(k), & otherwise. \end{cases}$$

is a permutation on \mathbb{N} , but $x_{\pi(k)} \notin \mathbb{Z}^{I}(f)$ and $x_{\pi(k)} \notin \mathbb{Z}_{0}^{I}(f)$. Hence $\mathbb{Z}^{I}(f)$ and $\mathbb{Z}_{0}^{I}(f)$ are not symmetric.

Theorem 5.2.11. Let f be a modulus function. Then $\mathcal{Z}_0^I(f) \subset \mathcal{Z}^I(f) \subset \mathcal{Z}_{\infty}^I(f)$.

Proof. Let $(x_k) \in \mathcal{Z}^I(f)$. Then there exists $L \in \mathbb{C}$ such that

$$I - \lim f(|x_k - L|) = 0$$

Zweier I-Convergent Sequence Spaces and Their Properties

We have $f(|x_k|) \leq \frac{1}{2}f(|x_k - L|) + f\frac{1}{2}(|L|)$. Taking the supremum over k on both sides we get $(x_k) \in \mathcal{Z}^I_{\infty}(f)$. The inclusion $\mathcal{Z}^I_0(f) \subset \mathcal{Z}^I(f)$ is obvious.

Theorem 5.2.12. The function $\hbar : m_{\mathcal{Z}}^{I}(f) \to \mathbb{R}$ is the Lipschitz function, where $m_{\mathcal{Z}}^{I}(f) = \mathcal{Z}_{\infty}^{I}(f) \cap \mathcal{Z}^{I}(f)$, and hence uniformly continuous.

Proof. Let $x, y \in m_{\mathcal{Z}}^{I}(f), x \neq y$. Then the sets

$$A_x = \{k \in \mathbb{N} : |x_k - \hbar(x)| \ge ||x - y||_*\} \in I,$$
$$A_y = \{k \in \mathbb{N} : |y_k - \hbar(y)| \ge ||x - y||_*\} \in I.$$

Thus the sets,

$$B_x = \{k \in \mathbb{N} : |x_k - \hbar(x)| < ||x - y||_*\} \in m_{\mathcal{Z}}^I(f),$$
$$B_y = \{k \in \mathbb{N} : |y_k - \hbar(y)| < ||x - y||_*\} \in m_{\mathcal{Z}}^I(f).$$

Hence also $B = B_x \cap B_y \in m_{\mathcal{Z}}^I(f)$, so that $B \neq \phi$. Now taking k in B,

 $|\hbar(x) - \hbar(y)| \le |\hbar(x) - x_k| + |x_k - y_k| + |y_k - \hbar(y)| \le 3||x - y||_*.$

Thus \hbar is a Lipschitz function. For the space $m_{\mathcal{Z}_0}^I(f)$ the result can be proved similarly.

Theorem 5.2.13. If $x, y \in m_{\mathcal{Z}}^{I}(f)$, then $(x.y) \in m_{\mathcal{Z}}^{I}(f)$ and $\hbar(xy) = \hbar(x)\hbar(y)$.

Proof. For $\epsilon > 0$

$$B_x = \{k \in \mathbb{N} : |x_k - \hbar(x)| < \epsilon\} \in m_{\mathcal{Z}}^I(f),$$
$$B_x = \{k \in \mathbb{N} : |y_k - \hbar(y)| < \epsilon\} \in m_{\mathcal{Z}}^I(f).$$

Chapter 5 On Some Zweier I-Convergent Sequence Spaces Defined by a Modulus Function

Now,

$$|x_{k}y_{k} - \hbar(x)\hbar(y)| = |x_{k}y_{k} - x_{k}\hbar(y) + x_{k}\hbar(y) - \hbar(x)\hbar(y)|$$

$$\leq |x_{k}||y_{k} - \hbar(y)| + |\hbar(y)||x_{k} - \hbar(x)|$$
[5.9]

As $m_{\mathcal{Z}}^{I}(f) \subseteq \mathcal{Z}_{\infty}^{I}(f)$, there exists an $M \in \mathbb{R}$ such that $|x_{k}| < M$ and $|\hbar(y)| < M$.

Using eqn [5.9] we get

$$|x_k y_k - \hbar(x)\hbar(y)| \le M\epsilon + M\epsilon = 2M\epsilon$$

For all $k \in B_x \cap B_y \in m^I(f)$. Hence $(x.y) \in m^I_{\mathcal{Z}}(f)$ and $\hbar(xy) = \hbar(x)\hbar(y)$. For the space $m^I_{\mathcal{Z}_0}(f)$ the result can be proved similarly.