Chapter 8

Zweier I-Convergent Double Sequence Spaces

8.1 Introduction

At the initial stage the notion of I-convergence was introduced by Kostyrko, Šalát and Wilczyński[48]. Later on it was studied by Šalát, Tripathy and Ziman[65], Demirci [10] and many others. I-convergence is a generalization of Statistical Convergence.

Now we have a list of some basic definitions used in the chapter:
Definition 8.1. A double sequence of complex numbers is defined as a function $x: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{C}$. We denote a double sequence as $\left(x_{i j}\right)$, where the two subscripts run through the sequence of natural numbers independent of each other. A number $a \in \mathbb{C}$ is called a double limit of a double sequence $\left(x_{i j}\right)$ if for every $\epsilon>0$ there exists some $N=N(\epsilon) \in \mathbb{N}$ such that

$$
\left|\left(x_{i j}\right)-a\right|<\epsilon, \quad \text { for all } i, j \geq N(\text { see }[6,7,8])
$$

Definition 8.2. A double sequence $\left(x_{i j}\right) \in \omega$ is said to be I-convergent to a number L if for every $\epsilon>0$,

$$
\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left|x_{i j}-L\right| \geq \epsilon\right\} \in I
$$

In this case we write $I-\lim x_{i j}=L$.

Definition 8.3. A double sequence $\left(x_{i j}\right) \in \omega$ is said to be I-null if $\mathrm{L}=0$. In this case we write

$$
I-\lim x_{i j}=0
$$

Definition 8.4. A double sequence $\left(x_{i j}\right) \in \omega$ is said to be I-cauchy if for

[^0]every $\epsilon>0$ there exist numbers $\mathrm{m}=\mathrm{m}(\epsilon), \mathrm{n}=\mathrm{n}(\epsilon)$ such that
$$
\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left|x_{i j}-x_{m n}\right| \geq \epsilon\right\} \in I
$$

Definition 8.5. A double sequence $\left(x_{i j}\right) \in \omega$ is said to be I-bounded if there exists $M>0$ such that

$$
\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left|x_{i j}\right|>M\right\}
$$

Definition 8.6. A double sequence space E is said to be solid or normal if $\left(x_{i j}\right) \in \mathrm{E}$ implies $\left(\alpha_{i j} x_{i j}\right) \in \mathrm{E}$ for all sequence of scalars $\left(\alpha_{i j}\right)$ with $\left|\alpha_{i j}\right|<1$ for all (i, $\left.\mathbf{j}\right) \in \mathbb{N} \times \mathbb{N}$.

Definition 8.7. A double sequence space E is said to be monotone if it contains the canonical preimages of its stepspaces.

Definition 8.8. A double sequence space E is said to be convergence free if $\left(y_{i j}\right) \in E$ whenever $\left(x_{i j}\right) \in E$ and $x_{i j}=0$ implies $y_{i j}=0$.

Definition 8.9. A double sequence space E is said to be a sequence algebra if $\left(x_{i j} \cdot y_{i j}\right) \in E$ whenever $\left(x_{i j}\right),\left(y_{i j}\right) \in E$.

Definition 8.10. A double sequence space E is said to be symmetric if $\left(x_{i j}\right) \in E$ implies $\left(x_{\pi(i j)}\right) \in E$, where π is a permutation on $\mathbb{N} \times \mathbb{N}$.

In this Chapter we introduce the following classes of sequence space:

$$
\begin{gathered}
{ }_{2} \mathcal{Z}^{I}=\left\{x=\left(x_{i j}\right) \in{ }_{2} \omega: I-\lim Z^{p} x=L \text { for some } \mathrm{L} \in \mathbb{C}\right\} \\
{ }_{2} \mathcal{Z}_{0}^{I}=\left\{x=\left(x_{i j}\right) \in{ }_{2} \omega: I-\lim Z^{p} x=0\right\} \\
{ }_{2} \mathcal{Z}_{\infty}^{I}=\left\{x=\left(x_{i j}\right) \in{ }_{2} \omega:\{(i, j) \in \mathbb{N} \times \mathbb{N}:\right. \\
\text { there exist } \left.\left.M>0,\left|Z^{p} x\right| \geq M\right\} \in I\right\} \\
{ }_{2} \mathcal{Z}_{\infty}=\left\{x=\left(x_{i j}\right) \in{ }_{2} \omega: \sup _{i, j}\left|Z^{p} x\right|<\infty\right\}
\end{gathered}
$$

We also denote the multiplier double sequence spaces as

$$
{ }_{2} m_{\mathcal{Z}}^{I}={ }_{2} \mathcal{Z}_{\infty} \cap{ }_{2} \mathcal{Z}^{I} \quad \text { and } \quad{ }_{2} m_{\mathcal{Z}_{0}}^{I}={ }_{2} \mathcal{Z}_{\infty} \cap{ }_{2} \mathcal{Z}_{0}^{I} .
$$

8.2 Main Results

Theorem 8.2.1. The classes of sequences ${ }_{2} \mathcal{Z}^{I},{ }_{2} \mathcal{Z}_{0}^{I},{ }_{2} m_{\mathcal{Z}}^{I}$ and ${ }_{2} m_{\mathcal{Z}_{0}}^{I}$ are linear spaces.

Proof. We shall prove the result for the space ${ }_{2} \mathcal{Z}^{I}$. The proof for the other spaces will follow similarly. Let $\left(x_{i j}\right),\left(y_{i j}\right) \in{ }_{2} \mathcal{Z}^{I}$ and let α, β be scalars. Then

$$
\begin{aligned}
& I-\lim \left|x_{i j}-L_{1}\right|=0, \text { for some } L_{1} \in \mathbb{C} \\
& I-\lim \left|y_{i j}-L_{2}\right|=0, \text { for some } L_{2} \in \mathbb{C} .
\end{aligned}
$$

That is for a given $\epsilon>0$, we have

$$
\begin{align*}
& A_{1}=\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left|x_{i j}-L_{1}\right|>\frac{\epsilon}{2}\right\} \in I, \tag{8.1}\\
& A_{2}=\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left|y_{i j}-L_{2}\right|>\frac{\epsilon}{2}\right\} \in I \tag{8.2}
\end{align*}
$$

We have

$$
\begin{aligned}
\left|\left(\alpha x_{i j}+\beta y_{i j}\right)-\left(\alpha L_{1}+\beta L_{2}\right)\right| & \leq|\alpha|\left(\left|x_{i j}-L_{1}\right|\right)+|\beta|\left(\left|y_{i j}-L_{2}\right|\right) \\
& \leq\left|x_{i j}-L_{1}\right|+\left|y_{i j}-L_{2}\right| .
\end{aligned}
$$

Now, by [8.1] and [8.2],

$$
\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left|\left(\alpha x_{i j}+\beta y_{i j}\right)-\left(\alpha L_{1}+\beta L_{2}\right)\right|>\epsilon\right\} \subset A_{1} \cup A_{2}
$$

Therefore $\left(\alpha x_{i j}+\beta y_{i j}\right) \in{ }_{2} \mathcal{Z}^{I}$. Hence ${ }_{2} \mathcal{Z}^{I}$ is a linear space.

We state the following result without proof in view of Theorem 2.1.
Theorem 8.2.2. The spaces ${ }_{2} m_{\mathcal{Z}}^{I}$ and ${ }_{2} m_{\mathcal{Z}_{0}}^{I}$ are normed linear spaces, normed by

$$
\begin{equation*}
\left\|x_{i j}\right\|_{*}=\sup _{i, j}\left|x_{i j}\right| . \tag{8.3}
\end{equation*}
$$

Theorem 8.2.3. A sequence $x=\left(x_{i j}\right) \in{ }_{2} m_{\mathcal{Z}}^{I}$ I-converges if and only if for every $\epsilon>0$ there exists $N_{\epsilon}=(m, n) \in \mathbb{N} \times \mathbb{N}$ such that

$$
\begin{equation*}
\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left|x_{i j}-x_{N_{\epsilon}}\right|<\epsilon\right\} \in{ }_{2} m_{\mathcal{Z}}^{I} \tag{8.4}
\end{equation*}
$$

Proof. Suppose that $L=I-\lim x$. Then

$$
B_{\epsilon}=\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left|x_{i j}-L\right|<\frac{\epsilon}{2}\right\} \in{ }_{2} m_{\mathcal{Z}}^{I} \text { for all } \epsilon>0 .
$$

Fix an $N_{\epsilon}=(m, n) \in B_{\epsilon}$. Then we have

$$
\left|x_{N_{\epsilon}}-x_{i j}\right| \leq\left|x_{N_{\epsilon}}-L\right|+\left|L-x_{i j}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

which holds for all $(i, j) \in B_{\epsilon}$. Hence $\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left|x_{i j}-x_{N_{\epsilon}}\right|<\epsilon\right\} \in{ }_{2} m_{\mathcal{Z}}^{I}$.

Conversely, suppose that $\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left|x_{i j}-x_{N_{\epsilon}}\right|<\epsilon\right\} \in{ }_{2} m_{\mathcal{Z}}^{I}$. That is

$$
\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left|x_{k}-x_{N_{\epsilon}}\right|<\epsilon\right\} \in{ }_{2} m_{\mathcal{Z}}^{I}
$$

for all $\epsilon>0$. Then the set

$$
C_{\epsilon}=\left\{(i, j) \in \mathbb{N} \times \mathbb{N}: x_{i j} \in\left[x_{N_{\epsilon}}-\epsilon, x_{N_{\epsilon}}+\epsilon\right]\right\} \in{ }_{2} m_{\mathcal{Z}}^{I} \text { for all } \epsilon>0
$$

Let $J_{\epsilon}=\left[x_{N_{\epsilon}}-\epsilon, x_{N_{\epsilon}}+\epsilon\right]$. If we fix an $\epsilon>0$ then we have $C_{\epsilon} \in{ }_{2} m_{\mathcal{Z}}^{I}$ as well as $C_{\frac{\epsilon}{2}} \in{ }_{2} m_{\mathcal{Z}}^{I}$. Hence $C_{\epsilon} \cap C_{\frac{\epsilon}{2}} \in{ }_{2} m_{\mathcal{Z}}^{I}$. This implies that

$$
J=J_{\epsilon} \cap J_{\frac{\epsilon}{2}} \neq \phi
$$

that is

$$
\left\{(i, j) \in \mathbb{N} \times \mathbb{N}: x_{i j} \in J\right\} \in{ }_{2} m_{\mathcal{Z}}^{I}
$$

that is

$$
\operatorname{diam} J \leq \operatorname{diam} J_{\epsilon}
$$

where the diam of \mathbf{J} denotes the length of interval \mathbf{J}. In this way, by induction we get the sequence of closed intervals

$$
J_{\epsilon}=I_{0} \supseteq I_{1} \supseteq \ldots . . \supseteq I_{k} \supseteq
$$

with the property that $\operatorname{diam}_{k} \leq \frac{1}{2} \operatorname{diam}_{k-1}$ for $(\mathrm{k}=2,3,4, \ldots .$.$) and$ $\left\{(i, j) \in \mathbb{N} \times \mathbb{N}: x_{i j} \in I_{k}\right\} \in{ }_{2} m_{\mathcal{Z}}^{I}$ for $(\mathrm{k}=1,2,3,4, \ldots \ldots$.$) . Then there exists$ a $\xi \in \cap I_{k}$ where $(i, j) \in \mathbb{N} \times \mathbb{N}$ such that $\xi=I-\lim x$, that is $L=I-\lim x$.

Theorem 8.2.4. Let I be an admissible ideal. Then the following are equivalent.
(a) $\left(x_{i j}\right) \in{ }_{2} \mathcal{Z}^{I}$;
(b) there exists $\left(y_{i j}\right) \in{ }_{2} \mathcal{Z}$ such that $x_{i j}=y_{i j}$, for a.a.k.r.I;
(c) there exists $\left(y_{i j}\right) \in{ }_{2} \mathcal{Z}$ and $\left(z_{i j}\right) \in{ }_{2} \mathcal{Z}_{0}^{I}$ such that $x_{i j}=y_{i j}+z_{i j}$ for all $(i, j) \in \mathbb{N} \times \mathbb{N}$ and

$$
\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left|y_{i j}-L\right| \geq \epsilon\right\} \in I
$$

(d) there exists a subset $K=\left\{k_{1}<k_{2} \ldots\right\}$ of \mathbb{N} such that $K \in £(I)$ and $\lim _{n \rightarrow \infty}\left|x_{k_{n}}-L\right|=0$.

Proof. (a) implies (b). Let $\left(x_{i j}\right) \in{ }_{2} \mathcal{Z}^{I}$. Then there exists $L \in \mathbb{C}$ such that

$$
\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left|x_{i j}-L\right| \geq \epsilon\right\} \in I
$$

Let $\left(m_{t}, n_{t}\right)$ be an increasing sequence with $\left(m_{t}, n_{t}\right) \in \mathbb{N} \times \mathbb{N}$ such that

$$
\left\{(i, j) \leq\left(m_{t}, n_{t}\right):\left|x_{i j}-L\right| \geq \frac{1}{t}\right\} \in I
$$

Define a sequence $\left(y_{i j}\right)$ as

$$
y_{i j}=x_{i j}, \text { for all }(i, j) \leq\left(m_{1}, n_{1}\right)
$$

For $\left(m_{t}, n_{t}\right)<(i, j) \leq\left(m_{t+1}, n_{t+1}\right)$ for $t \in \mathbb{N}$.

$$
y_{i j}=\left\{\begin{array}{cc}
x_{i j}, & \text { if }\left|x_{i j}-L\right|<t^{-1} \\
L, & \text { otherwise }
\end{array}\right.
$$

Then $\left(y_{i j}\right) \in{ }_{2} \mathcal{Z}$ and form the following inclusion

$$
\left\{(i, j) \leq\left(m_{t}, n_{t}\right): x_{i j} \neq y_{i j}\right\} \subseteq\left\{(i, j) \leq\left(m_{t}, n_{t}\right):\left|x_{i j}-L\right| \geq \epsilon\right\} \in I
$$

We get $x_{i j}=y_{i j}$, for a.a.k.r.I.
(b) implies (c). For $\left(x_{i j}\right) \in{ }_{2} \mathcal{Z}^{I}$, there exists $\left(y_{i j}\right) \in{ }_{2} \mathcal{Z}$ such that $x_{i j}=y_{i j}$, for a.a.k.r.I. Let $K=\left\{(i, j) \in \mathbb{N} \times \mathbb{N}: x_{i j} \neq y_{i j}\right\}$, then $K \in I$. Define a sequence $\left(z_{i j}\right)$ as

$$
z_{i j}=\left\{\begin{array}{cc}
x_{i j}-y_{i j}, & \text { if }(i, j) \in K \\
0, & \text { otherwise }
\end{array}\right.
$$

Then $z_{i j} \in{ }_{2} \mathcal{Z}_{0}^{I}$ and $y_{i j} \in{ }_{2} \mathcal{Z}$.
(c) implies (d). Let $P_{1}=\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left|z_{i j}\right| \geq \epsilon\right\} \in I$ and

$$
K=P_{1}^{c}=\left\{\left(i_{1}, j_{1}\right)<\left(i_{2}, j_{2}\right)<\ldots\right\} \in £(I) .
$$

Then we have $\lim _{n \rightarrow \infty}\left|x_{\left(i_{n}, j_{n}\right)}-L\right|=0$.
(d) implies (a). Let $K=\left\{\left(i_{1}, j_{1}\right)<\left(i_{2}, j_{2}\right)<\ldots\right\} \in £(I)$ and $\lim _{n \rightarrow \infty}\left|x_{\left(i_{n}, j_{n}\right)}-L\right|=0$. Then for any $\epsilon>0$, and Lemma 1.17, we have

$$
\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left|x_{i j}-L\right| \geq \epsilon\right\} \subseteq K^{c} \cup\left\{(i, j) \in K:\left|x_{i j}-L\right| \geq \epsilon\right\}
$$

Thus $\left(x_{i j}\right) \in{ }_{2} \mathcal{Z}^{I}$.
Theorem 8.2.5. The inclusions ${ }_{2} \mathcal{Z}_{0}^{I} \subset{ }_{2} \mathcal{Z}^{I} \subset{ }_{2} \mathcal{Z}_{\infty}^{I}$ hold and are proper. Proof. Let $\left(x_{i j}\right) \in{ }_{2} \mathcal{Z}^{I}$. Then there exists $\mathrm{L} \in \mathbb{C}$ such that

$$
I-\lim \left|x_{i j}-L\right|=0
$$

We have $\left|x_{i j}\right| \leq \frac{1}{2}\left|x_{i j}-L\right|+\frac{1}{2}|L|$. Taking the supremum over (i, j) on both sides we get $\left(x_{i j}\right) \in{ }_{2} \mathcal{Z}_{\infty}^{I}$. The inclusion ${ }_{2} \mathcal{Z}_{0}^{I} \subset{ }_{2} \mathcal{Z}^{I}$ is obvious. The strict inclusion is also trivial.

Theorem 8.2.6. The function $\hbar:{ }_{2} m_{\mathcal{Z}}^{I} \rightarrow \mathbb{R}$ is the Lipschitz function, where ${ }_{2} m_{\mathcal{Z}}^{I}={ }_{2} \mathcal{Z}^{I} \cap{ }_{2} \mathcal{Z}_{\infty}$, and hence uniformly continuous.

Proof. Let $x, y \in{ }_{2} m_{\mathcal{Z}}^{I}, x \neq y$. Then the sets

$$
\begin{aligned}
& A_{x}=\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left|x_{i j}-\hbar(x)\right| \geq\|x-y\|_{*}\right\} \in I, \\
& A_{y}=\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left|y_{i j}-\hbar(y)\right| \geq\|x-y\|_{*}\right\} \in I
\end{aligned}
$$

Thus the sets,

$$
\begin{aligned}
& B_{x}=\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left|x_{i j}-\hbar(x)\right|<\|x-y\|_{*}\right\} \in{ }_{2} m_{\mathcal{Z}}^{I}, \\
& B_{y}=\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left|y_{i j}-\hbar(y)\right|<\|x-y\|_{*}\right\} \in{ }_{2} m_{\mathcal{Z}}^{I} .
\end{aligned}
$$

Hence also $B=B_{x} \cap B_{y} \in{ }_{2} m_{\mathcal{Z}}^{I}$, so that $B \neq \phi$. Now taking (i, j) in B, $|\hbar(x)-\hbar(y)| \leq\left|\hbar(x)-x_{i j}\right|+\left|x_{i j}-y_{i j}\right|+|y-\hbar(y)| \leq 3| | x-\left.y\right|_{*}$.

Thus \hbar is a Lipschitz function. For ${ }_{2} m_{\mathcal{Z}_{0}}^{I}$ the result can be proved similarly.

Theorem 8.2.7. If $x, y \in{ }_{2} m_{\mathcal{Z}}^{I}$, then $(x . y) \in{ }_{2} m_{\mathcal{Z}}^{I}$ and $\hbar(x y)=\hbar(x) \hbar(y)$.

Proof. For $\epsilon>0$

$$
\begin{aligned}
& B_{x}=\{(i, j) \in \mathbb{N} \times \mathbb{N}:|x-\hbar(x)|<\epsilon\} \in{ }_{2} m_{\mathcal{Z}}^{I} \\
& B_{y}=\{(i, j) \in \mathbb{N} \times \mathbb{N}:|y-\hbar(y)|<\epsilon\} \in{ }_{2} m_{\mathcal{Z}}^{I}
\end{aligned}
$$

Now,

$$
\begin{align*}
|x . y-\hbar(x) \hbar(y)| & =|x . y-x \hbar(y)+x \hbar(y)-\hbar(x) \hbar(y)| \\
& \leq|x||y-\hbar(y)|+|\hbar(y)||x-\hbar(x)| \tag{8.5}
\end{align*}
$$

As ${ }_{2} m_{\mathcal{Z}}^{I} \subseteq{ }_{2} \mathcal{Z}_{\infty}$, there exists an $M \in \mathbb{R}$ such that $\hbar|x|<M$ and $|\hbar(y)|<M$. Using eqn[8.5] we get

$$
|x . y-\hbar(x) \hbar(y)| \leq M \epsilon+M \epsilon=2 M \epsilon
$$

For all $(i, j) \in B_{x} \cap B_{y} \in{ }_{2} m_{\mathcal{Z}}^{I}$. Hence $(x . y) \in{ }_{2} m_{\mathcal{Z}}^{I}$ and $\hbar(x y)=\hbar(x) \hbar(y)$. For ${ }_{2} m_{\mathcal{Z}_{0}}^{I}$ the result can be proved similarly.

Theorem 8.2.8. The spaces ${ }_{2} \mathcal{Z}_{0}^{I}$ and ${ }_{2} m_{\mathcal{Z}_{0}}^{I}$ are solid and monotone .
Proof. We shall prove the result for ${ }_{2} \mathcal{Z}_{0}^{I}$. Let $\left(x_{i j}\right) \in \mathcal{Z}_{0}^{I}$. Then

$$
\begin{equation*}
I-\lim _{k}\left|x_{i j}\right|=0 \tag{8.6}
\end{equation*}
$$

Let $\left(\alpha_{i j}\right)$ be a sequence of scalars with $\left|\alpha_{i j}\right| \leq 1$ for all $(i, j) \in \mathbb{N} \times \mathbb{N}$. Then the result follows from [8.6] and the following inequality

$$
\left|\alpha_{i j} x_{i j}\right| \leq\left|\alpha_{i j}\right|\left|x_{i j}\right| \leq\left|x_{i j}\right| \text { for all }(i, j) \in \mathbb{N} \times \mathbb{N} .
$$

That the space ${ }_{2} \mathcal{Z}_{0}^{I}$ is monotone follows from the Lemma 1.16. For ${ }_{2} m_{\mathcal{Z}_{0}}^{I}$ the result can be proved similarly.

Theorem 8.2.9. If I is not maximal, then the space ${ }_{2} \mathcal{Z}^{I}$ is neither solid nor monotone.

Proof. Here we give a counter example. Let $\left(x_{i j}\right)=1$ for all $(i, j) \in \mathbb{N} \times \mathbb{N}$. Then $\left(x_{i j}\right) \in{ }_{2} \mathcal{Z}^{I}$. Let $K \subseteq \mathbb{N} \times \mathbb{N}$ be such that $K \notin I$ and $\mathbb{N} \times \mathbb{N}-K \notin I$. Define the sequence

$$
\left(y_{i j}\right)=\left\{\begin{array}{cc}
\left(x_{i j}\right), & \text { if }(i, j) \in K \\
0, & \text { otherwise }
\end{array}\right.
$$

Then $\left(y_{i j}\right)$ belongs to the canonical preimage of K-step space of ${ }_{2} \mathcal{Z}^{I}$ but $\left(y_{i j}\right) \notin{ }_{2} \mathcal{Z}^{I}$. Hence ${ }_{2} \mathcal{Z}^{I}$ is not monotone.

Theorem 8.2.10. The spaces ${ }_{2} \mathcal{Z}^{I}$ and ${ }_{2} \mathcal{Z}_{0}^{I}$ are sequence algebras.
Proof. We prove that ${ }_{2} \mathcal{Z}_{0}^{I}$ is a sequence algebra. Let $\left(x_{i j}\right),\left(y_{i j}\right) \in{ }_{2} \mathcal{Z}_{0}^{I}$. Then

$$
I-\lim \left|x_{i j}\right|=0 \quad \text { and } \quad I-\lim \left|y_{i j}\right|=0
$$

Then we have $I-\lim \left|\left(x_{i j} . y_{i j}\right)\right|=0$. Thus $\left(x_{i j} . y_{i j}\right) \in{ }_{2} \mathcal{Z}_{0}^{I}$. Hence ${ }_{2} \mathcal{Z}_{0}^{I}$ is a sequence algebra. For the space ${ }_{2} \mathcal{Z}^{I}$, the result can be proved similarly.

Theorem 8.2.11. The spaces ${ }_{2} \mathcal{Z}^{I}$ and ${ }_{2} \mathcal{Z}_{0}^{I}$ are not convergence free in general.

Proof. Here we give a counter example. Let $I=I_{f}$. Consider the sequence $\left(x_{i j}\right)$ and $\left(y_{i j}\right)$ defined by

$$
x_{i j}=\frac{1}{i . j} \text { and } y_{i j}=i . j \text { for all }(\mathrm{i}, \mathrm{j}) \in \mathbb{N} \times \mathbb{N}
$$

Then $\left(x_{i j}\right) \in{ }_{2} \mathcal{Z}^{I}$ and ${ }_{2} \mathcal{Z}_{0}^{I}$, but $\left(y_{i j}\right) \notin{ }_{2} \mathcal{Z}^{I}$ and ${ }_{2} \mathcal{Z}_{0}^{I}$. Hence the spaces ${ }_{2} \mathcal{Z}^{I}$ and ${ }_{2} \mathcal{Z}_{0}^{I}$ are not convergence free.

Theorem 8.2.12. If I is not maximal and $I \neq I_{f}$, then the spaces ${ }_{2} \mathcal{Z}^{I}$ and ${ }_{2} \mathcal{Z}_{0}^{I}$ are not symmetric.

Proof. Let $A \in I$ be infinite. If

$$
x_{i j}=\left\{\begin{array}{cc}
1, & \text { for } i, j \in A \\
0, & \text { otherwise }
\end{array}\right.
$$

Then $x_{i j} \in{ }_{2} \mathcal{Z}_{0}^{I} \subset{ }_{2} \mathcal{Z}^{I}$. Let $K \subset \mathbb{N}$ be such that $K \notin I$ and $\mathbb{N}-K \notin I$. Let $\phi: K \rightarrow A$ and $\psi: \mathbb{N}-K \rightarrow \mathbb{N}-A$ be bijections, then the map $\pi: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
\pi(k)= \begin{cases}\phi(k), & \text { for } k \in K \\ \psi(k), & \text { otherwise }\end{cases}
$$

is a permutation on \mathbb{N}, but $x_{(\pi(m) \pi(n))} \notin{ }_{2} \mathcal{Z}^{I}$ and $x_{(\pi(m) \pi(n))} \notin{ }_{2} \mathcal{Z}_{0}^{I}$. Hence ${ }_{2} \mathcal{Z}^{I}$ and ${ }_{2} \mathcal{Z}_{0}^{I}$ are not symmetric.

Theorem 8.2.13. The sequence spaces ${ }_{2} \mathcal{Z}^{I}$ and ${ }_{2} \mathcal{Z}_{0}^{I}$ are linearly isomorphic to the spaces ${ }_{2} c^{I}$ and ${ }_{2} c_{0}^{I}$ respectively, i.e ${ }_{2} \mathcal{Z}^{I} \cong{ }_{2} c^{I}$ and ${ }_{2} \mathcal{Z}_{0}^{I} \cong{ }_{2} c_{0}^{I}$.

Proof. We shall prove the result for the space ${ }_{2} \mathcal{Z}^{I}$ and ${ }_{2} c^{I}$. The proof for the other spaces will follow similarly. We need to show that there exists a linear bijection between the spaces ${ }_{2} \mathcal{Z}^{I}$ and ${ }_{2} c^{I}$. Define a map $T:{ }_{2} \mathcal{Z}^{I} \longrightarrow{ }_{2} c^{I}$ such that $x \rightarrow x^{\prime}=T x$

$$
T\left(x_{i j}\right)=p x_{i j}+(1-p) x_{(i-1)(j-1)}=x_{i j}^{\prime}
$$

where $x_{-1}=0, p \neq 1,1<p<\infty$. Clearly T is linear. Further, it is trivial that $x=0=(0,0,0, \ldots \ldots)$ whenever $T x=0$ and hence injective. Let $x_{i j}^{\prime} \in{ }_{2} c^{I}$ and define the sequence $x=x_{i j}$ by

$$
x_{i j}=M \sum_{r=0}^{i} \sum_{s=0}^{j}(-1)^{(i-r)(j-s)} N^{(i-r)(j-s)} x_{i j}^{\prime}
$$

for $(i, j) \in \mathbb{N} \times \mathbb{N}$ and where $M=\frac{1}{p}$ and $N=\frac{1-p}{p}$. Then we have

$$
\begin{gathered}
\lim _{(i, j) \rightarrow \infty} p x_{i j}+(1-p) x_{(i-1)(j-1)}= \\
p \lim _{(i, j) \rightarrow \infty} M \sum_{r=0}^{i} \sum_{s=0}^{j}(-1)^{(i-r)(j-s)} N^{(i-r)(j-s)} x_{i j}^{\prime} \\
+(1-p) \lim _{(i, j) \rightarrow \infty} M \sum_{r=0}^{i-1} \sum_{s=0}^{j-1}(-1)^{(i-1-r)(j-1-s)} N^{(i-1-r)(j-1-s)} x_{(i-1)(j-1)}^{\prime} \\
=\lim _{(i, j) \rightarrow \infty} x_{i j}^{\prime}
\end{gathered}
$$

which shows that $x \in{ }_{2} \mathcal{Z}^{I}$. Hence T is a linear bijection. Also we have $\|x\|_{*}=\left\|Z^{p} x\right\|_{c}$. Therefore

$$
\begin{gathered}
\|x\|_{*}=\sup _{(i, j) \in \mathbb{N} \times \mathbb{N}}\left|p x_{i j}+(1-p) x_{(i-1)(j-1)}\right| \\
=\sup _{(i, j) \in \mathbb{N} \times \mathbb{N}} \mid p M \sum_{r=0}^{i} \sum_{s=0}^{j}(-1)^{(i-r)(j-s)} N^{(i-r)(j-s)} x_{i j}^{\prime} \\
+(1-p) M \sum_{r=0}^{i-1} \sum_{s=0}^{j-1}(-1)^{(i-1-r)(j-1-s)} N^{(i-1-r)(j-1-s)} x_{(i-1)(j-1)}^{\prime} \mid \\
=\sup _{(i, j) \in \mathbb{N} \times \mathbb{N}}\left|x_{i j}^{\prime}\right|=\left\|x^{\prime}\right\|_{{ }_{2} c^{I} .}
\end{gathered}
$$

Hence ${ }_{2} \mathcal{Z}^{I} \cong{ }_{2} c^{I}$.

[^0]: "Example is the school of mankind, and they will learn at no other."-Edmund Burke

