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Abstract 

According to Boltzmann, energy was assumed countable. His idea was 

thought to be peculiar at his time. Boltzmann gave a statistical basis to the fact 

that pure different independent particles tend to be mixed spontaneously and 

occupy more space individually whereby increasing its randomness. Chemical 

process proceeds toward the state of lowered potential energy usually 

accompanied by increased randomness. He defined the average entropy of a 

system containing a large number of particles as S=k ln  where   is the 

number of states given by counting the number of ways for placing certain 

number of indistinguishable particles in the possible number of different energy 

cells. If we have   microstates, the probability to find any microstate is 1/ . 

The number of microstates measures disorder. Entropy is related to degree of 

disorder. For gases the number of microstates due to location in the space is 

very large. As a consequence, entropy of gases is very large and entropy of solid 

is small. At low temperature vibration and rotation of molecules are limited. 

That is why entropy is smaller at low temperature. When entropy is maximized, 

equilibrium is obtained in the isolated system. 

1.1  Introduction 

In the Boltzmann model, the distribution law is derived from the number of 

states given by counting the number of ways for placing certain number of 

indistinguishable particles in the possible number of different energy cells. It is 

also important to know how the given total amount of energy is distributed 

among the certain number of independent individuals. Energy was assumed 

countable. His idea was well understood and accepted later in the time of 

quantum mechanics. Boltzmann also gave a statistical basis to the fact that pure 

different independent particles tend to be mixed spontaneously and occupy 
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more space individually whereby increasing its randomness. Ludwig Boltzmann 

was born in 1844. A little more than a hundred years ago, he found out the 

famous formula S=k ln  that was carved on his tombstone. In order to reach 

his conclusion, we should recall the way of counting the number of 

permutations of N distinguishable objects. And then we start calculating the 

number of the cases that there will be   bits of something in the first individual 

if there are E bits of something to put into N individuals, which finally results in 

leading the probability distribution of the Boltzmann model. Bits of something 

could be coins and individuals could be people in economy. Bits of something 

could be energy and individuals could be molecules in chemistry. 

The number of permutations of N distinguishable objects is N!. This is easy 

to explain. Any of the N objects can be in the first position, any of the other 

(N-1) in the second position, any of the remaining (N-2) in the third position, 

and so on. 

If the N objects are indistinguishable, the number of permutations is N!/N!=1. 

If N is the sum of two different objects,          , the number of permutation 

is          . 

Question 1-1 Each diatomic molecule oscillates in one direction and has one 

oscillator. How many ways are there putting a total of 6 energy bits into 4 

diatomic molecules if each oscillator can hold any number of energy bits? 

Answer: First we assume that E identical bits of energy are distinguishable as 

well as molecules. Then E identical bits of energy are numbered from         

Each molecule could have any amount of energy bits. We should admit special 

cases that some molecules have no energy bits and one molecule has all of E 

energy bits to oneself. We also admit some molecules have the same number of 

energy bits. 
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If we write the contents of the molecules in order, for example with E     

and N = 4 molecules we could have ( ,1 2 3, 4 5, 6) which means that none in 

the first molecule, 1, 2, 3 in the second, 4and 5 in the third, and 6 in the fourth 

or ( ,5 2 4, 3, 6 1) which means that none in the first molecule, 5, 2, and 4 in the 

second, 3 in the third, and 6 and 1 in the fourth or (2, 5 4, 6 1, 3) which means 

that 2 in the first molecule, 5 and 4 in the second, 6 and 1 in the third, and 3 in 

the fourth. The first and the second permutation show the same number of 

energy bits in the first and second molecule. The first and the third permutation 

show the same number of energy bits in the fourth molecule. 

Now we replace the commas representing boundaries between 

distinguishable molecules with letters, which can be in any order, although the 

first set of numbers still denotes the contents of the first molecule, the second 

set denotes the contents of the second, etc. 

The first permutation above might be (A 1 2 3 B 4 5 C 6), (A 1 2 3 C 4 5 B 6), 

(B 1 2 3 A 4 5 C 6), (B 1 2 3 C 4 5 A 6), (C 1 2 3 A 4 5 B 6),              

or (C 1 2 3 B 4 5 A 6). 

Clearly in any case the total number of permutations which is the number of 

possible ways of arranging 6 numbers and three letters is 

               

i.e. (E + N–1)! 

Each of the 9! different outcomes is called a microstate in statistical 

mechanics. The total number of microstates is 9!. 

Let’s count the number of ways of putting a total of E energy bits into N 

molecules if each oscillator can hold any number of energy bits. Because the 

number of boundaries is fewer than the number of molecules by one, we have 

N–1 boundaries instead of N. There is a lot of over-counting in this way of 
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counting permutations, because actually we can't distinguish bits of energy from 

one another and also can't distinguish boundaries from one another because 

molecules are indistinguishable. To correct the counting of permutations we 

must divide by the number of ways of writing the energy numbers which is    

and by the number of ways of arranging the boundary labels which is 

         After correction we obtain the total number of permutations,      

for arranging the E indistinguishable bits of energy into N identical molecules. 

We call      the total number of microstates. 

     
        

        
                      (1.1) 

     increases as E and N increases. 

Question 1-2 If there are E bits of energy to put into N molecules, what is the 

probability that there will be    bits in the first molecule? N and E are assumed 

constant, whereas    is considered to be variable. 

Answer: That is, what is the fraction of the number of permutations if we put 

   bits in the first molecule and         bits among the remaining     

molecules? Now let’s calculate the number of ways to distribute the rest of 

energy         bits among the remaining      molecules. If there are    

bits in the first molecule, there must be        bits left to distribute among 

the remaining      molecules, which can be distributed in     
 ways. 

      
           

             
                    (1.2) 

So if the E bits of energy are distributed equally likely among N molecules, 

the probability of having                                                   , 

and the number of microstates if we put    bits in the first molecule           . 
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1.2  Finding the Boltzmann Probability Distribution 

In order to eliminate these factorials in Eq. 1.2, we refer to James Stirling, a 

Scottish mathematician who led to the conclusion for very large N. 

                                  , the contribution of the root is 

very small. 

Derivation of Stirling’s approximation is written below. 

     
 

 

                               
 

 
 

      
 

 

        

     
 

 

              
           

                                          

             when N is very large. 

        

   
   

 

 
            

We rewrite Eq. 1.2 in natural log form. 

                                          

If E is very large,    is considered a continuous variable. 

Taking the derivatives with respect to    , we get 

        

   
 

               

            
 

            

   
 

           

       
 

        

   
 

  
               

            
      

           

       
      

                                            . 
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Now we apply the Stirling's Approximation, 
        

   
     to the preceding 

equation since N and E are very large numbers. 

          

    
                            

        

    
    (1.3) 

We have a lot more total bits of energy than molecules, and the number of bits 

of energy in one molecule is never anything like as large as the total number of 

either molecules or total bits of energy.    is the number of molecules which has 

energy 0,    is the number of molecules with energy 1,    is the number of 

molecules with energy 2, and so on.    is the number of molecule with the total 

amount of energy E, which is one at most. The probability of having the total 

amount of energy, E in the first molecule and the rest has none, is nearly zero. 

                            It is clear that having a very large amount 

of energy,    in the first molecule is far less likely to happen since it will 

decrease the number of ways of arranging the remaining energy into the 

remaining molecules. The number of molecules with higher energy might be 

smaller otherwise the resultant sum of energy will exceed the fixed value of total 

energy.     is the average energy per molecule. There are two constraints for 

the distribution of molecules in each energy compartment. 

     

 

   

                          

Putting more energy into the particular molecule will less likely happen 

because the number of ways of arranging the remaining energy into the 

remaining molecules will decrease. 
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Question 1-3 1) Why      equals one? 2) Why    is one at most?      

3) What is the most probable value of   ? 4) Which is larger,     or    ? 

Answer: 1) Substitute    for    in Eq. 1.2. Then      
          

            
   

since 0! = 1. 2)    is one at most since only one molecule can hold the 

totalamount of energy E, which is unlikely to happen because          

      
    

     
 

 

     
   since        is very large number. 3) The most 

probable value of    is zero. 4)    . 

Question 1-4 Each atom oscillates in three directions and has 3 oscillators. 

Consider a solid that has a collection of N oscillators in N/3 atoms for which the 

distribution of oscillators over energy is denoted by   ,   ,   ,…  . The    

is the number of oscillators which has energy 0, The    is the number of 

oscillators with energy 1, The     is the number of oscillators with energy 2, 

and so on. Count the number of ways of placing    oscillators in the 

compartment of energy 0 and successively    oscillators in the compartment 

of energy 1. The number of counting is equal to the total number of microstates 

due to the successive arrangement. 

Answer: We do not use Eq. 1.2 since we set the number of oscillators with 

energy 0 and 1 to     and    respectively. If we have a total of 3 oscillators 

and putting   oscillators from 3 into the compartment of energy 0 which has 

two rooms, the number of possible ways of arrangement in the compartment of 

energy 0 is three in the first energy room, and two (2=3-1) in the second room. 

The number of total ways of the arrangement is 3x2. Since the oscillators are 

indistinguishable, we must divide 3x2 by 2.  

In general we have                              

permutations to put    oscillators into the compartment of energy 0 from 

indistinguishable N oscillators. 
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If we successively put    oscillators in the compartment of energy 1, the 

number of ways of the arrangement is 

                                      . 

Total number of microstates is not additive but multiple since we have the 

number of ways of the successive arrangement corresponding to each of the first 

starting arrangement. 

     
                     

    
 

                                  

   
 

 
  

                 
 

We assume that                    

So we will make no significant error in Eq. 1.3 above even if we ignore the 

smaller energy bits,    and 2, but we can't ignore N. 

         

    
    

   

 
       

 

 
  

But for very small           Since we are considering          

          
 

 
  is very small number, but not zero. We get the following 

approximation. 

         

    
             

 

 
 

               
 

 
      

          
  

   
       

This says that a plot of the log of         vs. the number of energy bits is a 

straight line whose slope is      . The probability of putting a certain number 

of energy bits into the particular molecule is proportional to   
 

   
   . 
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This is called the Boltzmann distribution where E/N, the total number of bits 

of energy divided by the number of molecules is the average energy per 

molecule. In the Boltzmann model the average is assumed to be    (see the 

next page) which has the same units of     k is the Boltzmann constant and T is 

temperature. 

Table 1.1  Number of molecules with the amount of energy i. 

Amount of energy,    0 1 2 3 4   

Number of molecules,                      

                     . A total amount of energy, E increases with increasing 

temperature. 

   is the number of molecules which have the energy     . 

   is one at most since only one molecule can hold the total amount of 

energy, which is unlikely to happen.    is the largest among   . 

Probability function of a molecule in state i with energy    can be described 

as            
  
    

             
  

  
 

What is  ? 

                    

   

              
 

        
   

 

       
       

 
 where   

 

 
         

    

is called molecular partition function.                (1.4) 

If the total number of molecules is    
 
       we obtain 
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 and        

  

 
 

       

 
.     (1.5) 

Since 
  

 
 

      

 
 

 

 
 , we get the following equation. 

       
                             (1.6) 

       

       
 

  

  
                               (1.7) 

               
  

  
 

 

Figure 1.1  Probability versus individual energy. 

Why                is maximum at      and decreases steadily with 

increasing     ? We have a given total amount of energy. Putting more energy 

into the particular molecule will decrease the number of ways of arranging the 

remaining energy into the remaining molecules. 

The expected value of energy is defined as follows.    

                    
         

 
. 

Replacing 
  

 
 by 

       

 
 from Eq. 1.5, we get 
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If the energy levels are spaced equally and close together relative to kT, then 

we can convert the sum into integrals without introduction of state density. 

Kinetic energy from translation, rotation and vibration, and potential energy of 

oscillator can be described in the form of      . 

         
 

 

            
 

 

        

     
 

 
  

 

 

         
      

 
    

  

       

 
  

 

          
   

  
 

 

  
                 . 

Integrating by parts we get      

 
    

   
 

 
                      

 
   

 

 
 . 

         

The average energy per molecule of the Boltzmann model is set as kT. So it is 

reasonable to get kT if you calculate the average energy using the Boltzmann 

equation. It is also known that solving the Schrodinger equation for harmonic 

oscillator of diatomic molecules, the energy spacing between successive states 

is constant.       
 

 
   . So we can calculate the average energy of the 

vibration model just like the Boltzmann model without introduction of state 

density. But for translational energy in a box, the energy spacing between 

successive states is progressively larger as i increases. We will consider it later 

in 1.12 along with the translational energy of monatomic gas. 

Example 1-1 Assume perfect atomic lattice with a collection of oscillators at 

T      Set ground state energy     . Calculate q and     

If energies of all other states are much larger than    , 

q=         
   =       +       +       +        …+         . 
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At T     all the oscillators are at ground state. The constituent atoms sit at 

the particular position without translation, rotation, and vibration. All of them 

don’t have any energy except bonding energy. 

Example 1-2 Let’s calculate probability,         at very high temperature. 

Consider atomic lattice of solid that has a collection of N oscillators. Set ground 

state energy equals zero. What is the average energy of the solid with N 

oscillators? 

If     is relatively very small compared to kT,        
         . 

         
  

 
 

  

 
  

In a range of smaller    , the oscillators are equally distributed among all 

states at very high temperature. The average energy of the solid is    . 

1.3  Interacting System 

Actually in the universe particles in a system are interacting. Consider a 

system which contains a number of solids and in the system these are 

interacting with each other. Since energy consists of discrete energy bits, the 

energy of a solid also have discrete values              . Each solid can 

exchange energy with each other. If we make a number of observations of a 

solid at different times, we will observe that a solid might have a different     

at each time. The thermodynamic internal energy is defined as the average 

energy of all solids in the system when measured in a large number of 

observations. 

Our simple model is now a system of two small identical interacting solids in 

contact with a large reservoir isolated from the rest of the universe and each 
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solid oscillates in three directions and has 3 oscillators. Solids with    and    

can exchange energy. We assume a total energy of all solids is constant since 

the system is isolated from the rest of the universe. The total energy,    

            is fixed and constant.  

There are some microstates for the interacting system specified by the 

temporary constrained values of    and   . Using the following equation 

below, the calculated results of microstates are shown in Table 1.2. 

     
        

        
 where E = 0, 1, 2, 3, 4, 5,…, E and N oscillators. 

If         and         for each solid, over a long time scales the 

number of total microstates possibly appearing to the system is 1287 as shown 

in Table 1.2. All 1287 microstates are equally probable. If you look at the 

system at any instant, you are equally likely to find one microstate in any of 

1287 microstates. This assumption is called the fundamental assumption of 

statistical mechanics. In Table 1.2 you will see the maximum of         is at 

     =     =       = < E > = 4. We assume that at equilibrium    is about 

the same as   . So the many of      will appear about the average energy, 

<     >. The peak of      will become higher and its width gets narrower when 

N gets larger. It will be justified mathematically. 



Physical Approach to Biology 
 

16  http://www.sciencepublishinggroup.com 

 

Figure 1.2  Each solid A and B has 3 oscillators and they can exchange energy. 

Table 1.2  Combined system and multiplicities. 

                                 

0 1 8 45 45 

1 3 7 36 108 

2 6 6 28 168 

3 10 5 21 210 

4 15 4 15 225 

5 21 3 10 210 

6 28 2 6 168 

7 36 1 3 108 

8 45 0 1 45 
    Total=1287 

Now we will make a mathematical justification for a system with two large 

interacting solids where atoms of a solid cannot exchange positions, but solids 

can exchange their energy. Each polyatomic solid has a huge number of 

oscillators(N), and the total energy(E) in the system is assumed constant since 

the system is isolated from the rest of the universe. 

If N is huge, Eq. 1.1 becomes      
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We will take the natural logarithm of Eq. 1.1, apply Stirling’s approximation 

and rewrite it below. 

         
      

      
                        

                                        

                                        (1.8) 

                                    

Since we assume    , N/E is very small and so we obtain the following 

approximation using Taylor‘s expansion of the logarithm,             

                       

                  

Substituting         for         in Eq. 1.8, we obtain 

                                      

                                                              

                                          (1.9) 

The last term is negligible compared to the others with the assumption of 

   . 

                    

                                   (1.10) 

It is easily understandable that   is a very large number and will increase a 

lot by a small positive change of E and N in Eq. 1.10. 

Let’s apply the result to a system with two large interacting solids model. 

                                             (1.11) 

It might have a peak at           /2 = < E >. 
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                                           (1.12) 

To find what the graph looks like near the peak, we substitute           

and 
    

 
    for    and    respectively in Eq. 1.11. 

                                                  (1.13) 

We take the logarithm to simplify the second factor of Eq. 1.12. 

                        

                                                  
     

                                 
           

    

 
 
 
  

   

    
 
 
  . 

By exponentiation of the last expression, we obtain 

                                            
  . 

Putting this back into Eq. 1.13, we will find a function called a Gaussian. 

                                  

                                    
 

                    
 
. 

The number of microstates falls down to 1/e of its maximum value when 

           . 

The width of a peak is about        . If N =      , the width is       

           which is very narrow. 

Two large interacting solids have a very narrow high peak of         and so 

        is not be scattered. The maximum number of microstates,           

appears about           . 
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Figure 1.3  The distribution of total microstates about < E > as a function of  

E in a large interacting system. 

When two large interacting solids are at equilibrium in an isolated system, all 

microstates will have about the same energy,      and then all degenerate 

microstates have the same probability to appear at    . 

This can be true for more than two identical interacting solids system. Solids 

can be replaced with identical molecules which interact with each other. When 

identical interacting molecules are at equilibrium in an isolated system, all 

microstates will have about the same energy,      and then all degenerate 

microstates have the same probability to appear at    . 

1.4  Partition Functions and Degeneracy 

If there are some numbers of microstates with the same energy, the states are 

said to be degenerate. The state of being degenerate is called degeneracy. An 

interacting system has degenerate microstates at < E > as described in 1.3. 

Locational exchanges of gaseous particles in the space also cause degenerate 

microstates if there is no potential energy in a system. 

   
 is the number of degenerate microstates with the same molecular energy    . 

Molecular partition function (q) is q         
        

       
    . 
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Canonical partition function (Q) is the partition function for a system which 

is composed of a number of solids or particles. 

          
         

       
    . 

   is the system energy of microstate i.     
 is the number of degenerate 

microstates with the system energy,   . 

System energy is considered as the sum of the energy of each particle, 

                       

                                 
 

  can be expressed by q after separating the partition function for a system. 

          

   

   
        

      
                 

    

   

 

     
      

   

      

    
      

   

      

    
      

   

      

       
      

   

      

      

     for distinguishable particles that can exchange positions. 

        for indistinguishable particles that can exchange positions. 

1.5  Translational Distribution of Gasses 

In contrast to solid the number of microstates of gaseous molecules largely 

depends on its volume because of the outcome of exchanging positions. So the 

number of microstates of gases is much greater than solids due to a huge 

number of its possible location for a particle. Here we will discuss the number 

of microstates for gaseous particles in the space. An ideal gas is assumed to 

have no microstates associated with molecular rotation, vibration, interaction 

and etc., but it has translational kinetic energy. 
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Now we have the gaseous molecule whose molecular size is assumed to be 

         . If total volume of the space is    , then each gaseous molecule can 

take      possible locations. One molecule can enter one of      energy cells 

in the space of     . So the number of microstates provided for one molecule is 

equal to     . We assume that there is no potential energy in the space and so the 

molecule does not obtain the potential energy due to changing its location. Hence 

the number of degenerate microstates due to location is     . 

Let’s calculate the number of microstates caused by location of N gaseous 

molecules in       

The number of degenerate microstates for distinguishable N molecules in the 

space is 

                                                 . 

For indistinguishable N molecules,                   . 

Example 1-3 We consider the gaseous molecule which molecular size is 

assumed to be          . We assume that all molecules are indistinguishable 

and potential energy in the space is negligible. We have      energy cells 

available for each molecule in the space of     . If the system has one mole of 

gaseous molecules, count the number of degenerate microstates due to locational 

disorder in the space of    .   (Avogadro’s constant) = 6.02      

The number of degenerate microstates for distinguishable N molecules is 

                                                           . 

The number of degenerate microstates for indistinguishable N molecules is 

                         since N distinguishable particles have N! times 

more permutations than that of indistinguishable particles have. 
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Since N is large, we can apply the Stirling’s approximation,           

          
         

          
                                        

For gases, the number of microstates is huge as a result of the translational 

distribution in the space. However for liquids and solids, all space is filled with 

molecules and so the number of microstates arose from location largely depends 

on their impurity, and much smaller compared to that of gases. The number of 

microstates for pure solid is considered to be one at 0 K and increases as 

temperature goes up due to starting of vibrations. 

Question 1-5 If the ideal liquid molecules is composed of 100 molecules of A 

and 400 molecules of B, count the number of microstates after mixing. We do not 

consider additional states which are associated with rotation, vibration, and etc. 

Answer:       
    

         
 

1.6  Changes in Energy and Enthalpy in Relation to 

Changes in States of the System 

1.6.1  Internal Energy as a State Function 

The first law of thermodynamics is stated from the experience as follows. 

The work done to the surroundings is equal to the heat withdrawn from the 

surroundings if the process of a system is carried out in any cyclic 

transformation.            for all cycles. 

The system cannot do work without the equivalent quantity of heat supply in 

a cyclic system. 
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Figure 1.4  Two different paths between two thermodynamic states. 

                 
  

         
  

   

         
  

         
  

 

Corollary, the sum of q and w is independent of path whereas w and q 

depends on path individually. This means that there is a state function whose 

differential is       . 

The differentials of the internal energy is defined by 

                  ,                (1.14) 

where q is heat and the sign of heat transfer,    from the surrounding to the 

system is positive.      is external pressure and V is volume. If    is positive, 

           is the work done to the outside that is negative. 

The difference in energy only depends on the initial and final states of the 

system. 

      
      

      

           

The internal energy of the universe is constant, in other words it is conserved. 

                                    

The energy has a definite value when the state of a system is specified by two 

of state properties such as pressure (P), volume (V) or temperature (T). Since 
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the internal energy is a function of T and V, the differential of the internal 

energy is expressed mathematically below. 

    
  

  
 
 

    
  

  
 

 
              (1.15) 

The difference of energy between the value at initial condition and the value 

at final condition can be measurable at certain condition described below. 

If the system changes at constant volume,                   

 
  

  
 
 

  . 

   denotes the amount of heat transfer under constant volume.       

 
  

  
 
 

 
   

  
   . The sign    is the heat capacity of the system at constant 

volume and easily obtained by drawing tangent line of    versus temperature. 

The heat capacity is the amount of heat transfer needed to raise one degree of its 

temperature. The substance with a large heat capacity like a thick porcelain 

container needs more heat supply to raise its temperature and the temperature 

drops slowly when it is left. 

        

           
  

  
                   (1.16) 

The internal energy is defined as expected value of the net energy of 

molecules as a whole.               where    is the system energy in 

an assembly of molecules of state i. The internal energy of an ideal gas is 

calculated in 1.12. The result is           (Eq. 1.33) and           

for one mole of ideal gas. An ideal gas has no vibration and no rotation like a 

monoatomic gas and is assumed no interaction between molecules. It has only 

translational energy and is considered that there is no contribution of bonding 

energy of molecules to the properties of the system. 
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1.6.2  Joule Free Expansion of Gasses 

Joule free expansion is a process of adiabatic gas expansion to vacuum where 

no heat exchanges and no works are done. Very small temperature changes are 

observed for real gases experimentally. We will calculate the change of internal 

energy associated with the free expansion. 

 

Figure 1.5  Adiabatic expansion of a gas to vacuum. 

    
  

  
 
 

    
  

  
 

 
         

  

  
 

 
     

What does  
  

  
 

 
 mean? We want to know the value of  

  

  
 

 
. We need to 

convert it into the measurable term. 

 
  

  
 

 
     

  

  
 
 

                (1.17) 

 
  

  
 
 

 is named Joule coefficient and measured experimentally. They found 

it was a very small and negative value for real gases. For an ideal gas the Joule 

coefficient is considered zero.        . It is always true for ideal gas. It is 

almost true for monatomic gases and approximately true for other gases. 

Because  
  

  
 

 
    the equation         doesn’t require that the 

transformation should be carried out under constant volume.      of 

monatomic gases such as He, Ne, Ar and Kr at 298.15 K is 1.5 /mole which is 
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smaller than the other gases. Those of diatomic gases are from 2.5 to 3.4 per 

mole. Those of triatomic gases are from 3.5 to 4.0 per mole. 

Example 1-4 Calculate            for the transformation of one mole of 

   from 25   to 37 . We assume there is almost no interaction between 

molecules. 

   
 

 
    

 

 
                                                

                  

Since we assumed there is almost no interaction between molecules, the gas 

is considered as an ideal gas. 

1.6.3  Enthalpy as a State Function 

If the system changes at constant pressure and if the system does only 

reversible    work, external pressure is assumed to be in equilibrium to 

internal pressure during the system change. The sign    denotes the amount of 

heat transfer under constant pressure. If it is positive, the system gains an 

increase in temperature and so the internal energy will increase but at the same 

time the system will do work to the outside as the volume increases. 

 

Figure 1.6  The system changes at constant pressure. (a) Initial state. (b) Final state. 
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since        . 

We define enthalpy as       . Enthalpy depends on the state of a 

system. Like the internal energy, it has a definite value when the state of a 

system is specified by two of state properties such as p, V or T. It doesn’t 

depend on the path of a process. That is, enthalpy is a state function. 

Under a constant pressure, 

                              (1.18) 

The heat transfer at constant pressure between the system and the 

surroundings is equal to the change in enthalpy. The heat withdrawn from the 

surrounding is equal to the increase in enthalpy. 

Relationship between the internal energy and enthalpy under constant 

pressure is as follows. 

                                         . 

For gases,           differ by one to two percent. For liquids and solids, 

the difference is negligible.    is easily measureable. 

Example 1-5  
  

  
 
 

 
   

  
    is the heat capacity of the system at 

constant pressure. Calculate    for one mole of an ideal gas and         Use 

the formula, pV = nRT for an ideal gas. 

   denotes the amount of heat transfer under constant pressure. If it is 

positive, the system gains an increase in temperature and so the internal energy 

will increase but at the same time the system will do work to the outside as the 

volume increases. For one mole of an ideal gas      
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For an ideal gas         as described following Eq. 1.16. 

                

1.7  Changes in Entropy and Gibbs Free Energy 

1.7.1  Entropy as a State Function 

  
    

 
 is called entropy and we will prove below that it is a state function 

by using Carnot cycle for one mole of an ideal gas. All the paths of the Carnot 

cycle are assumed to be reversible. 

 

Figure 1.7  The Carnot cycle is a typical heat engine which  

has all paths are reversible. 

Path      : Isothermal process. 

   
 

 
      

           
  

  

  
   

 
  

  

  

       
  

  
  

Path      : Adiabatic process. 

q = 0,          
  

 
       . 
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Path     : Adiabatic process. q = 0,  
  

  
   

  

  
 
    

 

Path     : Isothermal process.  

                    
  

  

  
   

 
  

  

  

       
  

  
   

 
  

  
 
    

  
  

  
   

  

  
 
    

    
  

  
 

  

  
,    

  

  
      

  

  
    

  

  
 

  

  

   
  
  

 

   
  
  

 
  

  

  
 

  

  
 

  

  
                

     

 
   

where      denotes amount of heat transfer in a reversible process. 

Since  
     

 
    for any reversible cycle, we define entropy as a function 

of state like the internal energy and enthalpy. 

  
    

 
                  

     

 
                    (1.19) 

          
     

 

 

 

 

Because dq is path dependent, it is necessary to express dq in terms of state 

variables. 

          

For reversible process        and             . 

                                        (1.20) 
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Substituting         for    in the preceding equation, 

                            (1.21) 

At constant pressure and for reversible process,                  

where    is the heat capacity of the system at constant pressure. 

         

 
  

  
 
 

 
  

 
                         (1.22) 

1.7.2  Spontaneous Changes 

Irreversible changes are real changes. Spontaneous process is always 

irreversible. According to the second law of thermodynamics, an irreversible 

cycle is less efficient than a reversible one.  

If the work done by the system to the surrounding is expressed as       , 

then                          . 

                        

                             

                       
       

 
 

     

 
     

            

                                

                 

                                   (1.23) 

(1) If       in an isolated system like a thermos bottle,         

             . 
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          is the condition for irreversible process for isolated system 

according to Eq. 1.23. 

Since spontaneous process is always irreversible,           is the 

condition for spontaneity for isolated system. 

 

Figure 1.8.1  In an isolated system, equilibrium is achieved  

when the entropy is maximized. 

Equilibrium is achieved when entropy is maximized. 

(2) If H and      are constant,               . 

          is the condition for spontaneity under constant H and constant 

    . 

(3) If T and V are constant,                 .        is 

defined as the Helmholtz free energy. 

          is the condition for spontaneity under constant T and constant  . 

(4) If T and      are constant,                         

     . 

                          where G is defined as the 

Gibbs free energy. 
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Figure 1.8.2  At constant      and constant temperature, equiribrium is achieved 

when the Gibbs free energy is minimized. 

          is the condition for spontaneity under constant T and constant 

    . At constant      and constant temperature, equilibrium is achieved when 

the Gibbs free energy is minimized. 

Example 1-6 Prove  
  

  
 
 

    for reversible constant pressure process. 

From the definition,         –            

At constant pressure, putting   
  

  
 
 

 
  

 
 from Eq. 1.22 and   

  

  
 
 

    

into the next equation, 

 
  

  
 
 

  
  

  
 
 

   
  

  
 
 

        
  

 
       

Alternative solution:            from Eq. 1.21 

                                           

    
  

  
 
 
    

  

  
 

 

          
  

  
 
 

     

Example 1-7 What is integrated solution for  
  

  
 
 

 
  

 
 as temperature 

changes          under constant pressure? 
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Example 1-8 Phase conversion of liquid water to water vapor is considered a 

reversible constant pressure process because it is carried out under the 

atmospheric pressure which is about the same as the vapor pressure of the liquid. 

If the process is carried out at one atmospheric pressure and the normal boiling 

point of 100 , calculate       from the value of       (40.657 kJ/mole). 

At constant pressure and for reversible process,                   . 

                      

             
     

 

 

 

 
  

  
 

     

  
 

      
 

   
        

       
 

 
         

Question 1-6 Calculate       at one atmospheric pressure and the normal 

boiling point of 100 . 

Answer: 

                       

                                                            

1.8  Definition of Entropy 

If we have a system which is composed of identical N molecules at constant 

temperature in a large reservoir, and making number of observations of the 

system over time, we will find molecules are in a different state with different 

   . Instead of observing one system many times, we count the total number of 

ways for placing    molecules in the compartment 0,    molecules in the 

compartment 1 and so on. The compartments are energy cells with    . The 

number of states of a system containing N molecules,      is calculated below 

using Stirling’s approximation since N is assumed to be very large. If N and E 

are very large,    and    are considered to be continuous variables. 
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  where          . 

Let’s rewrite in natural log form. 

                                                          

               

   

                     

 

       

                

 

            

               

 

            

 

           

 

        

                

   

      

  
  

 
                                 .    (1.24) 

The number of microstates is determined by counting the number of ways of 

positioning an assembly of particles in the space and counting number of ways of 

putting particles into its energy compartments that an assembly of particles 

possesses. If we have    for a system 1 and    for system 2, total microstates 

are              . 

Because entropy is a state function, it should be additive.             . 

Then entropy is defined as a function of    . 

      

Using constant k, the average entropy per particle in a system containing a 

large number of particles is defined by Boltzmann as        and will be 
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discussed again in 1.10. Eq. 1.24 tells us that average entropy of a molecule is a 

function of the number of microstates and also a function of expected value of 

logarithm of the inverse probability of finding a particular microstate of a 

molecule. Eq. 1.24 is consistent with the fundamental assumption of statistical 

mechanics. If you look at the system at any instant, you are equally likely to 

find one microstate in any of all   microstates. If we have     microstates, the 

probability to find any one microstate is 1/  . 

The maximizing ways of arranging molecules into huge number of energy 

compartments results in the maximizing microstates and is the same as 

maximizing entropy of the system with constrains of            and 

      =           . 

Question 1-9 We have a system containing N molecules. Calculate the 

number of microstates when we put all the molecules but one into the energy 

compartment 0 and successively put one into the energy compartment 1. 

Answer:                            

Example 1-9 Maximize     to obtain the Boltzmann distribution with 

constrains of          ,       =                                   

where      
    

 
. When a system is isolated and in equilibrium, entropy is the 

maximum from 1.7.2 (1), and the number of identical molecules, N and total 

energy, E are assumed constant at equilibrium in an isolated system. 
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If N and E are very large,    and    are considered to be continuous 

variables. 

When    is maximum, 

                     
 

  
                    a) 

where         constant, and       =             constant. 

                                      b) 

                                     c) 

We sum up a), b) and c), when    is maximized. 

      
 

              

             

               
    , where        is the number of identical 

molecules which has no energy. 

The maximized way of arranging molecules into huge number of energy 

compartments results in the maximized microstates and we obtain the 

Boltzmann distribution. Entropy is the maximum when the ways of arranging 

molecules are maximized. In the isolated system at equilibrium we have the 

maximum entropy and the Boltzmann distribution of a system. 

1.9  Entropy Expressed by Partition Function 

All the thermodynamic functions can be calculated from the partition 

functions. The thermodynamic internal energy(U) is defined as the average of 

the system energy when measured in a large number of observations. The 

system energy is the total energy of all molecules in a system. We first start to 
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express the expected value of system energy,        by the partition 

function. Then we will express entropy by partition function. 

   
     

 
                    

          
   . 

                
 

 
                       (1.25) 

 
  

  
 
 

  
 

  
      

 

 

 

     

   

      

       
 

 
   

   

       
 

 
 
  

  
 
 

   
    

  
 
 

 

    
    

  
 
 

 
  

  
 
 
                  (1.26) 

 
  

  
 
 

 
 

  
 

 

  
   

 

   
 

Substituting      for  
  

  
 
 

 in Eq. 1.26, we obtain the following equation. 

      
    

  
 
 

                           (1.27) 

                          

                                                

    
  

  
 

 
    

  

  
 
 

   

     
  

  
 
 

                            (1.28) 

Substituting   
  

  
 
 

 for S in        , we get        
  

  
 
 

. 

Dividing        
  

  
 
 

 by   , we obtain  
 

   
 

 
 
  

  
 
 

 
 

   

 
    

  
 
 

. 
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 from Eq. 1.27. 

Integrating the above equation with respect to T, the folowing equation is 

obtained. 

 

 
        (constant of integration is taken to be zero) 

                                (1.29) 

Now we can express S with k, T, and Q. 

   
 

 
 

 

 
          

    

  
 
 

 

Question 1-8                                                 

      

Answer:      
  

  
 

 
    

    

  
 

 
,          

    

  
 
 

   
    

  
 

 
 , 

            
    

  
 

 
  

1.10  Entropy as the Function of Microstates and 

Probability of Finding a Particular Microstate of a 

Molecule 

We will prove that classically defined entropy is a function of expected value 

of logarithm of the inverse probability of finding a particular microstate of a 

molecule.  

   
 

 
 

 

 
 

 

 
 

   

  
 

 

  

 

 
   

   

          

 
  

  
                                  . 
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 . 

                                       (1.30) 

What does                 mean? It is the expected value of       . 

Eq. 1.24 tells us that the number of microstates per molecule is a function of 

expected value of logarithm of the inverse probability of finding a particular 

microstate of a molecule. Equation 1.30 says entropy is a function of expected 

value of logarithm of the inverse probability of finding a particular microstate of 

an assembly of molecules. 

Using constant k, the average entropy per particle in an assembly is defined as 

       .                     (1.31) 

                

   

        

If the system is isolated and at equilibrium, the system energy and a total 

number of molecules becomes constant and the system obtains the maximum 

entropy due to the maximum  . 

The number of microstates measures disorder. Entropy is related to degree of 

disorder. For gases, the number of microstates is very large. As a consequence 

entropy of gases is very large. For liquids and solids, all positions in space are 

occupied by molecules or atoms and so the number of microstates for them 

largely depends on their impurity and temperature. Entropy of liquids and solids 



Physical Approach to Biology 
 

40  http://www.sciencepublishinggroup.com 

is smaller than gases and gets smaller as it becomes pure. If there are more energy 

compartments in them, the number of microstates becomes larger and as a 

consequence entropy gets greater. 

This is the amazing conclusion. Eq. 1.31 gives approximate values of entropy 

of gas and liquid mixtures. 

Question 1-9 When we increase temperature of a system, entropy increases. 

Please explain why it happens? 

Example 1-10 Calculate S at 0 K for perfect pure crystal. 

                   

Since     at 0 K, S = 0 is an exact value if the crystal is pure crystal with 

no holes. We should also realize that it is impossible to have 0 K. 

Example 1-11 There are gaseous molecules with 2 distinct configurations with 

the same energy. Rotation around a single bond interconverts the 2 different 

conformers. The molecular size is assumed to be        . We have N 

molecules in the gas phase, molecular volume = v and total volume = V =      . 

Count the number of microstates due to configuration and location and calculate 

the approximate value of entropy due to configuration and location. We assume 

that potential energy in the space is negligible. We do not think of states due to 

vibration and rotation and etc. in this problem. 

 

Figure 1.9  The gaseous molecule has two different configurations. 

The number of microstates due to configurations for one molecule is 

                                                       . 
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The number of microstates due to location for one molecule is 

     . 

The number of microstates due to location for N molecule is 

          . 

The number of microstates due to configuration for N molecules is 

                                                                         

The total number of microstates is  

                                                 
                . 

Average entropy on configuration and location per molecule is 

                                        

1.11  Separation of Partition Functions 

The system energy is considered as the sum of the energy of each molecule, 

                       

                                 
 

           

   

   
        

      
                 

    

   

 

     
      

   

      

    
      

   

      

    
      

   

      

      
      

   

      

  

         

     for distinguishable particles that can interchange positions. 

        for indistinguishable particles that can interchange positions. 
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Using the Stirling’s approximation, the last formula is expressed in log form. 

                     

All thermodynamic functions can be expressed in terms of ln q instead of ln Q. 

1.12  Application to Monatomic Gas with  

Translational Energy 

We assume no contribution of bonding energy of molecules to the properties 

of a system and there is no potential energy. The gas is assumed to be ideal. 

Molecules of the gas are considered monoatomic. They do not interact with 

each other and are confined in a container. Only kinetic energy is considered. 

                

                          

   

        

The energy states for translation are considered to be the same as the energy 

states for a particle in a box which we will discuss later in the chapter 3. If the 

width of the box in the x direction is a,    
    

    .                 

   
      

   

 
 

 

   
  

    ,   =4  ,   =9  ,   =16  ,   =25  . 
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Figure 1.10  Energy levels for a particle in a box with rigid walls. 

The energy spacing between successive states gets progressively larger as n 

increases. 

       = (2n+1) 
  

     

If n is very large,           
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Using                                      , 

                                        (1.32) 

We differentiate Eq. 1.32 with respect to T. 

    
     

   
 
   

  
 

      
 
        

   
 
 

 

   
  

 
        

 
   

  

   
       

 
        

  

  
 

                    
    

  
 
   

  
 

 
     

 

 
           (1.33) 

     ,                   is Avogadro’s constant. 

    –                  . 

        –      –                                         

    
  

  
 

 
    

    

  
 

 
 

We get the derivative of Eq. 1.32 with respect to V. 

 
    

  
 

 
  

 

      
 
       

  
 

 
  

  

 
        

 
  

 

  
       

 
       

    
   

 
   

   

 
                    (1.34) 

This formula is well known and well describes monatomic gases in which the 

interaction energy between molecules is very small. A gas which has no 

vibration and no rotation like a monoatomic gas and has no interaction between 

molecules is called an ideal gas. An ideal gas satisfies Eq. 1.34. It is 

approximately true for real gases. 



Chapter 1  Boltzmann Probability Distribution and Entropy 
 

http://www.sciencepublishinggroup.com  45 

1.13  Calculation of Entropy Change Microscopically 

1.13.1  Free Expansion of a Gas 

Free expansion is a process of gas expansion to vacuum where no works are 

done. The temperature change was negligible experimentally. We assume that 

potential energy in the space is negligible. Kinetic energy of molecules is 

constant before and after the expansion. We will calculate the change of entropy 

associated with the free expansion of N gaseous molecules. 

Since there are no works and negligible heat exchange, the internal energy is 

constant during the free expansion. 

 

Figure 1.11  Free expansion of a gas to vacuum. 

We are considering gases of which all molecules are indistinguishable. Let 

molecular volume be v and total volume be V. 

The number of degenerate microstates which is the number of ways of 

positioning a molecule in the space is 

               

The number of total degenerate microstates which is the number of ways of 

positioning N molecules in the space is                            . 
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Entropy changes during the free expansion as volume changes from          

and pressure changes from         . 

                      
  

  
     

          

          
 

         
  

  
      

  

  
                     (1.35) 

                  
  

  
                   (1.36) 

The system moves toward the state with increasing disorder. As a gas 

diffuses, its pressure decreases and entropy increases which is accompanied by 

decreasing Gibbs free energy, G. The free expansion proceeds spontaneously. 

Since       and           ,   >0 is the condition for spontaneity 

from 1.7.2 (1). 

Question 1-10 Prove       during free expansion of a gas. 

Answer: Free expansion.                     Since       

                                           

1.13.2  Ideal Gas Mixture 

We will calculate the change of entropy when two ideal pure gases are mixed 

under constant pressure and temperature. We let molecular volume be equal for 

different two gases. Since gases are ideal, we don’t concern about microstates 

associated with molecular rotation, vibration, interaction and etc.. Kinetic 

energy is constant before and after the mixing since temperature does not 

change during mixing. We assume that potential energy in the space is 

negligible. We calculate only degenerate microstates which result from 

positional disorder to find entropy change due to mixing. 
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Figure 1.12  Two ideal pure gases are mixed under constant pressure and temperature. 

Entropy before mixing: 

                                                                                

                          
        

    

        

    
 

Entropy after mixing: We count how many ways to distribute    molecules 

of A and    molecules of B among the (V/v) lattice sites. 

                       
          

         
 

                  
          

         
     

        

    

        

    
 

      
          

                 
      

      

  
    

  
   

Since the initial pressures are the same, the initial volumes are in the ratio of 

the number of molecules. 

                                        

                            

         
      

  
    

  
     

 

  
     

  
        

          
   

                                . 

                                                   (1.37) 
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When two pure gases are mixed, entropy always increases. As    is 

negative, the mixing proceeds spontaneously under constant temperature and 

pressure from 1.7.2 (4). 

Question 1-11 For ideal gas mixing under constant pressure and temperature, 

find               and calculate   . 

Answer: For ideal gas,            from Eq. 1.33.      under 

constant temperature. 

                          

                                    

1.13.3  Ideal Liquid Mixture 

Here we calculate the change of entropy when two ideal pure liquid are 

mixed under constant pressure and temperature. We assume two different liquid 

molecules do not interact and the sizes of molecular volume are about the same. 

      of an ideal mixture is zero because no bonds are made or broken 

between molecules. Lattice model of liquid is different from gas in that all the 

space cells are occupied by the molecule. We assume pure ideal liquid has no 

disorder in location. We assume that potential energy in the space is negligible. 

 

Figure 1.13  Two pure liquids are mixed. 
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We assume two different molecules have the same molecular volume and 

lattice cell sizes.  

      
  

       
 

                                
  

       
 

             

                                                  

                                             
 

   
        

 

   
 

                                                            (1.38) 

In contrast to an ideal liquid, real liquids are considered to have additional 

states which are associated with molecular rotation, vibration, interaction and etc. 

besides of positional disorder, but these additional states occur in both the pure 

and mixed liquid. That’s why       is dominated by the disorder in molecular 

location. For real liquids heat of mixing,       is not zero but negligible since 

no bonds are made or broken.       will matter. For ideal mixture,     

            .                                      . 

The mixing goes spontaineously under constant temperature and pressure since 

       is negative. 

1.14  Double-stranded Polymer Model 

Each strand of polymer bonds with the other strand by H-bonding. We 

assume the interaction energy for each H-bonding is   . The strand unzips from 

the one end, rupturing the H-bonding of the end, then the next one, then the next 

and so on as we increase temperature. It resembles the denaturation of DNA. 

Each ruptured interaction raises the energy by     



Physical Approach to Biology 
 

50  http://www.sciencepublishinggroup.com 

This is a variation of the Boltzmann model which has nondegenerate evenly 

spaced states separated by tiny constnt energy          is the number of 

molecules with energy   .   increases with increasing temperature. 

Table 1.3  Number of molecules with the amount of energy,         

Amount of Energy,    0   2  3  4     

Number of molecules,                        

From the Boltzmann law,         
         

     

   

       
         

          
                 

If we set                                                  

 3       = 0    . 

Average value of energy is given by         
 

 
              

                   . 

          
 

 
                           

                             
 

 
                             

                       
 

  
                         

  
 

    

  
 

                                                                   

Since   
  

   
   

                                        
 

       
  

                
 

       
 



Chapter 1  Boltzmann Probability Distribution and Entropy 
 

http://www.sciencepublishinggroup.com  51 

                   

 

            
 

   
 

 

        
 

                
 

        
 
 

 

                          
 

        
                  

       
     

 
 

     

 
                  

 

  

       
         (1.39) 

When temperature is very small,                    
  

       
       

When temperature is very high, 

         
 

 
 
 

 
    

 

 
   

                                          (1.40) 

Question 1-12 Calculate                                 

Answer:         
      

  
                                     

1.15  Activation Energy 

Arrhenius presented a qualitative theory for molecular reaction. His original 

idea has been made more quantitative by later theories. Arrhenius considered 

that any reaction process can proceed first by means of the formation of 

“high-energy species” which we call the activation complex and secondly by 

the breakdown of this complex into products. If the activated complex has an 

activated energy,    , greater than the reactants, then the number of activated 

complex molecules over the number of the reactant molecules can be written as 

follows. 
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Since molecules having more than    have a chance to succeed the reaction, 

the reaction rate is considered to be proportional to the concentration of 

activated complex molecules. 

                                    

                                    

                            where k is called the rate constant. 

                                        (1.41) 

 

Figure 1.14  ln k versus inverse temperature. 

Factor A does not depend on temperature. It depends on the nature of the 

material involved. Factor A is the rate constant at infinitely high temperature. 

As the value of    increases, the energy requirement increases and it becomes 

more difficult to acquire this energy. The amount of         

                                               In order for reaction to 

proceed rapidly we increase temperature or lower the activation energy by 

catalysis. To assure the reaction going forward we have to take the products 

away, which prevents the backward reaction. 
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Example 1-12 The rate constant for a first order reaction at 27  is observed 

to be 0.0404 /s and changes to 2.23 /s at 67 . Estimate the rate constant     

(in      of the reaction at 47 . The first order reaction, such as      or 

radioactive decay do not require molecular collisions. 

                                     
  

  
    

   
 

 
 
  

 
 
  

 
 

   
  

  
 

   

 
 
 

  
 

 

  
  

                                 

                               

                        

   

 
                                  

Question 1-13 The hydrolysis of sucrose to form a molecule of glucose and a 

molecule of fructose is a part of digestive process.                 

                                           

Answer:                 . The reaction is slowed down due to 

impaired function of the enzyme. 
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