Chapter 1

Decomposition in a Singularly Perturbed System






1.1 Integral Manifolds and Separation Movements

Consider the problem of separation singularly perturbed equations of the
dynamics of the controlled system

x=AM)X+A{t)z+B (t)u+ f(t),
uz=A(t)x+A[)z+B,(t)u+ f,(t),

X(t,)=x°, z(t,)=2°
or
y(t, 1) = At, 1) y(t, 1) + B(t, p)u(t) + F(t, 1), (1.1.1)
yt)=y', =01,

where

AD A
A= Ln Law
H u

~ X(t,/—l) Bl(t)
: Y(t,,u)—(z(t“u)]’ B(t,ﬂ)=[527(t) ’

f.(t)
f(t,u=|1

L0 x(t)eR", z(t)eR™ - vectors of slow and fast
—h
7]

coordinate system (1.1.1) u(t)eR" - control vector function; gz - a small
positive parameter, te[t,,t,] vector functions f(t)eR", f,(t)eR"™ -
characterize a constant external force.

Suppose that the following conditions are met:

I. Matrices A(t), A(t), A(t), A,(t)— defined uniformly bounded and

uniformly continuous with their derivatives with t €[t,,t].
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[1. Eigenvalues value of matrix A, (t) submits to an inequality

ReA(t)<—y<0, (i=1m), (1.1.2)
where y >0 - some a constant, te[ty,t,].

At u=0, instead of (1.1.1) we receive uncontrollable system

X=AOx+A [0z + 1, (0),

. (1.1.3)
ut = AOX+ A1z + ().

If the conditions I, 11, then the system (1.2.2) is an integral manifold [98]
Z=H(t,u)x+2Z. (1.1.4)
Then the slow movement on the integral manifold (1.1.4) describes the

system

x=(AM)+AMOHE )X+ AM0Z+ (1), (1.1.5)
where the matrix H = H(t, #) and the vector Z = Z(t, x) are determined from

the equation

puH =—uHA () + A,(OH + A, — uHA,(DH,
uZ=(A(t)— uH(t, 1) A )7+ (f, (1) — uH (t, ) f, (1))

Making the system (1.1.3) replacement z=H(t, )X+ Z(t, ) +n can be

(1.1.6)

divided into fast and slow movements

X=(AM)+AOHE )X+ A M7+ 1,0 + A (07,

_ (1.1.7)
ury = (A1) — uH ([, 1) A, (O

This procedure is described in [44] when dividing of slow and fast
movements uncontrollable system.
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Direct application of this approach to system (1.1.1) is not possible. This is
due to the following reasons: when considering problem of optimal control, we
are interested primarily controllability of the system and the selection of the
control function. A selection of the control function is carried out by various
criteria of optimality and is associated with other problems.

Depending formulation of the problem, the above method can be applied only
for the intermediate results of the general problem, as is done in [44].

If we act in the same way as the way the system (1.1.1), then the second
equation (1.1.6) will be even additional term, which contains the control
function, which has not yet been determined.

In the first equation (1.1.6) contains a small nonlinearity, it is necessary to set
the initial condition in the beginning it is necessary to establish the existence
and uniqueness of the solution of this equation. If the initial value problem for
this equation is solvable, then there is another question that relates to the
passage to the limit « — 0 in the area of the boundary layer [18].

Given these observations outlined here offer significantly modified approach
integral manifold, which allows for "a complete separation of" slow and fast
coordinate system (1.1.1) and get a new system with traffic separation, which
has all the properties of the original system. And this in turn makes it possible
to formulate the optimal control problem under the constraint (1.1.1) in the form
of the problem of moment [42], which is a new step towards the studied system
in theory of optimal control.

We introduce the change of variables:
Z(t, 1) = Z(t, p) + Hx(t, w), (1.1.8)

X(t, g2) = X(t, 1) — uNZ(t, ), (1.1.9)
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where the matrices H =H(t, ) <> N =N(t, ) have dimensions respectively
mxn, nxm and will be determined by the parameters of the system (1.1.1).

Later they called a matrix integral manifold.

From (1.1.8) and (1.1.9) we have the relation:

():(j=[E”_ﬂNH ﬂN](Xj, (1.1.10)
Z -H E, \z

x) (E, - uN X

[Zj_[H Em—ﬂHNJ(f)' —

We denote
E, - uN
M =M(t,x) = , (1.1.12)
H E_— uHN
then
E. — uNH N
Mt=| T A AT (1.1.13)
—H E,

It is easy to verify that for known H and N, M-M ™ =E,

+m*

Since y:()z(j, y:@j,the ratio (1.1.10) and (1.1.11) are written as

y=M"y, y=M-y. (1.1.14)
For non-stationary matrices H and N depend ont and . Then the second

relation (1.1.14) we have
y=M-y+M-y. (1.1.15)

In view of (1.1.14) and (1.1.15), the system (1.1.1) is transformed as
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y=(M'AM -M M)y +M Bu+M*f . (1.1.16)

We write the equation (1.1.16) in expanded form

|

pN = A )N+ NA, (t, 1) + A, + uN(uH + pgHA (t, 1) - A, — AH)N
%Aa(t,#)Jr(#H +uHA (t, 1) - A, — AH)N [

N X

] A (t, 1) + N(—pHA (t, 1) + A+ AH — uH)

- %(—#H — At 1)+ A+ AH)

Ny X

Js

(1.1.17)

B (t, 1) fi(t, )
+ 15 U+l 1 ; :
_Bz(taﬂ) - fz(tnu)
Iz H
where
At )=AO+AOHE L), At u)=A0)—-uHE AR,
Bi(t, 1) =B, () +N(t, 1)B,(t, 1), B,(t, 1) =B, (t) — uH (¢, ) B,(1),
fi(t. )=, + Nt ) ot ), F,(t )= f,() - uH(t, ) F,(1), (1.1.18)
u=u(t, ).

In order to slow and fast state variables of the system (1.1.1) divided, we
require the following conditions:

—uH — uHA (t, 1) + A, + AH =0 and
uN —yA(t,,u)N + NAA(t,y)+ A =0. (1.1.19)

Hence we have the following matrix equations from which we can determine
the matrices-functions H and N:

HH =—uHA, + A+ AH — uHA, (H + AA), (1.1.20)
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uN = AN —NA, + uNHA, +,uA2(H +AAIN-A, (1121)
where A=A —AA'A,.

If H and N satisfy the equations (1.1.20) and (1.1.21) then from (1.1.17) we

have
o [Atw) 0 o [ Bt f,(t. o)
.= 1 - R u+| 1 -
[Zj 0 —=Atnu [Z] —B,(t 1) — f,(t, 1)
H u U
and
X=A(t )%+ B,(t, )u+ fi(t,22) | (1.1.22)
uZ = At 12)Z + B, (t, g)u+ f,(t, 1) . (1.1.23)

The boundary conditions for equations (1.1.22) and (1.1.23) are defined as
X(t)=%" X(t)=%, Z(t,)=2°, Z(t)=7", (1.124)

where X' =x' +uN(t)Z', Z' =2 —H(t)x', i=0, 1.

Equation (1.1.22), (1.1.23) and the boundary conditions (1.1.24) can be
rewritten as

V=AM u)y+B(t u+ft,u), yt)=y, =01, (1.1.25)
where
o (R X\ s 4 Bt > (1.1.26)
H U
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) A7)
ft,)=M7*f =1

- , X and Z are determined from (1.1.8) and
;fz(tvﬂ)

(1.1.9),and M of (1.1.13),

) At 0
At, 1) = 0 AA(t, u) | (1.12.27)
)7

where A (t,z) and A,(t, ) are determined by the relations of (1.1.18).

As a result, we have the following result as a theorem.
Theorem 1.1.1. Suppose that the conditions I, 1l and differentiable matrices
functions H(t,z), N(t, ) are satisfying the equation (1.1.20) and (1.1.21).

Then the system (1.1.1) may be divided into two subsystems of lower order,
respectively, which contain slow and fast coordinate system, where they are

connected only in the control.

Thus, if the conditions of theorem 1.1.1, we obtain a new system with traffic
separation, which is equivalent to the original system, as it has all the properties
(controllability and stabilizability) of the original system (1.1.1).

Therefore, in the study problems of control as constraints can take differential
constraints (1.1.22), (1.1.23).

1.2 Matrix of Integral Manifolds

Here we study the equation (1.1.20), (1.1.21) from which are determined by
the matrices of integral manifold. We prove the existence and uniqueness of
solutions of the equation (1.1.20). Show more mutually conjugate two equations
that correspond to linear homogeneous parts of (1.1.20) and (1.1.21).
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Theorem 1.2.1. If @.(tt,) is transition matrix for the equation

P =—A,®P() , and W(tt, 4) for the equation wu2(t,u)=A,M2(t k) ,
equation (1.1.20) with the initial condition

H(t,,.)=H,, (H,eG,GcR™"-bounded set) at x>0 equivalent to the

integral equation.

(G0 = P8 )20+ [ (50 A (S ) -
H,
[ (5, (5, 1) A, (8) (H (5,1 + A (8) Ay(S) ) 2L (E5)dS = Wy, i) HoPl (1) +
)

+% [Es.00(AG) - uH (s A E)(H(s, 1)+ A S)A(S)) )2l (ts)ds,

(1.2.1)
telt,,t,].
Proof. Differentiating (1.2.1) with respect to t and using the equation:
b.(t.4) = ~A OP.(LL). (1.2.2)
HE (L, 1) = AOPL, 1), (1.2.3)

We obtain

. 1 , '

H(t, 1) = ; A4(t)‘P(t,t0,,u)H0®* (t’to) _T(trtovﬂ)Ho@*(tvto)p\)(t) +
+%A4(t> [W(t,s, 1) (A ()~ H (3, 1) A () (H (5, 1) + A (S)A(S) ) (¢, 5)ds —

—% [W(t,s,1)(A(s) — H (5, 1) A (S) (H (5, 12) + A (S) Ay(5) ) ! (8, S)dsA 1) +

+%A3(t)—H(t,#)Az(t)(H(t,ﬂ)wLA41(t)A3(t))= AOI L OH )+

10
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1] B} ,
e [W(ts, (A (5) = 1H (5, 1) A (S) (H (s, 1) + AZ(S)A(S) ) ! (8, ) ds] -
b

f[W(t,to,u)Ho@;(t,tm% [, 0 (AG) - uH (s A (H(s, ) + A S)A(S) ) Lt 5)ds AL (1) +

+%A3(t)+H(t,u)Az(t)(H(t,uHA;l(t)Ag(t))=%A4(t)H(t,u)—H(t,u)Ao(t)+

+%A3(t>— H(t A G (HE )+ AT OA®D).

Hence we have the equation (1.1.20), Q.E.D.

We now show that (1.1.20) (or (1.2.1)) has a unique solution when
0<u<u,<1,where p, -apositive constant. We introduce the notation:

Hy (610 = Bty i) Ho @ (1) + L [t 5, A9, (124)
7

)

K(H,t,ﬂ)=—%f‘i’(t,s,#)H(S,#)AZ(S)(H(S,ﬂHA41(S)A3(S))<D*’(t,5)ds. (1.2.5)

Then the integral equation (1.2.1) is written as an operator equation

H(t ) =H,(t, 1) + 1K (H L, 1) (1.2.6)

where K(H,t,z) - integral operator in the form (1.2.5).

At u>0, H,eG, telt,t] introduce the following notation:

M, =[Hq[. M, =max|[A, )], M, =max|A,®)].

to<t<t, to<t<t;

M, = max

tystst

AO|M={M, M, M, M}, 1.2.7)

because by condition | and Il of the matrices A, (t), A (t) are uniformly

bounded and A, (t) - stable matrix with t €[t,,t,], then we have

11
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_A(-s)
[¥(t.s,m)|<Ce “ .|

DL (ts)| <C,e*", (1.2.8)

(0<s<t<t, O<u<py,, #4>0, A,>0).

_Altty) At Aty
[H,(t, )| <CMe MTC(l—e z js(l—%jMCe z +M7C£ml, (1.2.9)

where m, >0, ﬂzﬂl( —%}>0,C:cl.cz, U<t HF%-

At
[HE 2| <m,, (1.2.10)

A(t—tg)

||K(H,t,,U)||Sm{l—e “ J(mz+M2)SM*. (1.2.11)

Choose a number s, such, that for any g < u, there were

[Ho(t, ) + K (H,t, )| <m,

For this it suffices choose

1, < min{,ul, m, _*ml}. (1.2.12)
M
We construct a successive approximation H,,H,,...,H,,... by the formula

H., () =H,t ) +uKH,,t,1), k=012,... (1.2.13)
If |H(tw)|<m, at te[t,t], then H,.(t,x) is a continuous matrix

function defined on [t,,t, ] and satisfying

||Hk+1(t,u)|| S”Ho(t,,u)” +,u||K(Hk ,t,,u)” <m +uM™<m,. (1.2.14)

12
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For k=0 and k=1 have the inequality (1.2.14). By induction it holds for all
k>0.

Let the matrix A(t), (i=14) of the system (1.1.1) are defined, uniformly
bounded and uniformly continuous together with its derivatives on [t,,t,]. As a
K(H,t, &) continuous function of its arguments, one can show that there exists

a positive number L for any matrices functions H and ﬁ satisfying the

inequalities

||H(t,/¢)|| <m,, ‘I-:I(t,,u)H <m,, such that

HK(I—T,t,y)—K(ﬁ,t,y)HsLHI-_|—I-:|H (1.2.15)

when z < u,. Subtract term by term from (1.2.13) with k=n-1 is the same

equation for k=n-2. Then we obtain

Hn (thu) - anl(tuu) = ,u[K(anl’t’ ;u) - K(Hn—Z’t! fu)] ' (1216)

in view of (1.2.15) from (1.2.16), we have

[H, (¢ 2) —H, (& )] < ,uLtOITSI&)é Ho®-H_O|  1.217)
We introduce the notation
f, = max(H, (& )~ Ho & 0] (1.2.18)
then from (1.2.17) we have
r<ulLr_,. (1.2.19)

From the recurrence relation (1.2.17) we obtain

r,<ul™'r, (1.2.20)

13
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where mi)t(”H (1) = Ho (t, )] < 1 max [K(H.t )] =M™
IRll<m,,  p<u,

From (1.2.20) follows that the above series converges uniformly for t €[t,,t,]

any choice u < g, and where gL =1.

Now we will put " =min{su,, s}, then at u < u" creation of successive
approximations  (1.2.13) it is possible to, and the sequence
{H (t,)}, k=0,,... converges uniformly on the interval [t,,t,]. Limit of
this sequence satisfies (1.2.6) (or (1.2.1)).

The uniqueness of the solution follows from Gronwall's lemma, for any two

solutions H u H in the common domain of definition is valid assessment

Hﬁ(t,,u) - I—=|(t,y)” Sy“K(H_,t,y) - K(I—=|,t,y)” < LHI—T(t,y) - I-=|(t,y)“. ,
Is possible only if H(t, z)=H(t, z).

Consider the matrix differential equations, which correspond to linear
homogeneous parts of the equation (1.1.20), (1.1.21):

uH =—pFA () + A, 0H (1.2.21)
uN = pA ()N — NA, (1) . (1.2.22)
where H=H(t,z), N=N(t,z), t et,.t], HeR™ NeR™.

In the space R™" dot product [4]

(A,N)= Z o(FA - N). (1.2.23)

1 j=

We show that the equation (1.2.22) will be paired for a homogeneous matrix
equation (1.2.21). Indeed, if the equation (1.2.22) is conjugate to (1.2.21), its

14
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solution N(t) for any t satisfies (H(t), N(t))=Sp(H (t)- N(t))=const , where

the H (t) - solution of the equation (1.2.21).

On the basis of this definition we have
d p— p— - p— p— .
0=Sp(uA®-N®)=Sp(uAONO) + tHON®) =
=Sp(~uHA A D-NO+AOAON® + A ONE) )

Given the properties of the trace of the matrix, we obtain

0=Sp{HOLLN® - A ON® + NOA O]} -

This condition must be executed under any H(t), N(t).
Then 1N (t)— 1A, ()N(t) + N(t) A, (t) =0.

Hence we have the equation (1.2.22). Now we write the equation (1.1.21) in
the form

HN(R) = 1A ON©) - N©)A, (1) +
4 AD(HO+AOAD)NO +NOHDA® |- A1), (1224

Let H(t), (t, <t<t)) - solution of the equation (1.1.20). Then, based on the
basic property of the adjoint equation (it is the solution of the original
differential equation backward in time), the equation (1.2.24) can be written as
the integral equation

N(® = DELINT (L, 1) + [D(E5)[ A(9)(H(S) + ASAS))N(S) + N(SH(S)AS) [t s, i)ds -

LA, (s w)ds: (1.2.25)
us

15
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where N, =N(t), @ (t,t), Y.(t,.t,x) are the transition matrix for the

equation Xx(t) = A, ()x(t), xd(t,u)=-A0g(.).

The existence and uniqueness of solutions of the equation (1.2.25) can be
proved similarly to the previous case.
It should be noted that the differential equation (1.2.22), the boundary

condition is not specified in the initial moment of time t,, but in the end of the

transition process. This follows from the basic properties of the ad joint equation.

1.3 Matrix Transition of Singularly Perturbed System and
Its Asymptotic Behavior

Consider the question of constructing a transition matrix of the system (1.1.1).
Suppose that the conditions | and Il. Then for sufficiently small values of the

parameter, the transition matrix Y (t,t,, ) of the system

y(t, 1) = At L) y(t, 1), y(t,) =Y°, (1.3.1)

corresponding to the system (1.1.1) can be determined as the solution of the
matrix differential equation

Y.(t’touu) = A(tuu)Y(t'tO’/u)! Y(tOYtO’/u) = En+m * (132)

Matrix Y (t,t,, 2) divided into blocks

_ Yi(tite 10) Y, (tt, 1)
Y(t,to’ﬂ)_[Y?,(t’to’ﬂ) HY, (Lt 1) J, (1.33)
in view of (1.3.3) from the (1.3.2) we have:
Yi= AQY, + A®Ys Yiltyt ) =E,, (1.3.4)

Y, = A®Y, +AOYs, Yoty by, 2) =0,

16
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Y2 =AY, +AQ)Y,, Y, t,)=0, (1.3.5)
; 1
IUY4 = As(t)Yz + A4(t)Y4 ’ Y4(t01t0;,u) ZZ Em .

Solution of the Cauchy problem (1.3.4) and (1.3.5) will be determined in the
form [17]:

Y, (t,t, 1) =Yi(tty, i) + IV, (7, 1), 1=1,2,3,4, (1.3.6)
where
Vit i) =S V(b)) 1=1,2,3,4, (13.7)
k=0

Y, (7, 10) = Y ILY, (7)1, =1,2,3,
k=0

1 < t—t

IN(z, 1) = = TLY,(2) + DY, (D), v=—2,
H k=0 H
t-t,

1 o0
IN,(r, 1) = ;H71Y4(T) + szY4 (", 7=
k=0

We substitute (1.3.6) to (1.3.4) and (1.3.5). Further in these systems after
function replacement Y, - (t,t,,2), ITY,(t,zz) decomposition (1.3.7),

equating the coefficients of like powers, and separately depending on t, and
separately depending on the t, we obtain the equation for determining the terms

of the expansion (1.3.7).

At ' with regard ¢

dI1,Y,(z)

d = A (t)I,Y,(z), T1 Y,(0)=E,. (1.3.8)
T

At 1° with regard t:

17
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dY1o (t.ty)

& AT AAANY (L), Yiolto t) =E,,
Y a0 (t,t,)= —A;l%Vm (t,t,),

deo('[ t,)

dt (A1 AzA4 A3)Y20(tt) YZO(to’t)— Azo(t )Aao(t)

Yo (t,t,)= —A;lAg)Vzo (t,t,).

At 1° with regard 7 :

ALY, (r) . dIYy(7)

o66) o, A0 _ ()11 e)+ Ao TS
ngYz(T) = A, ()1, (2),
T
deY 0 = Ay (t)TT,Y, (7) + Ay (t)TT,Y, (7) + Ay (t)TT LY,

where A,(t,)=A(t,),i=1234.
For the (1.3.8) - (1.3.12) we have the initial conditions:
Yo (ty,ty) +I1,Y,(0)=E,, Yy, (t,.t,)+I1,Y,;(0)=0,
Yooty to) +T1,Y,(0) =0, Yao(t,,t,)+TL,Y,(0)=0.

The solution of equation (1.3.8) written in the form

ITY,(7)= exp(AA (to)T) :

(1.3.9)

(1.3.10)

(1.3.11)

(1.3.12)

(1.3.13)

(1.3.14)

Solutions of system (1.3.9) - (1.3.12) with the initial conditions (1.3.13) are

given by:
I1,Y,(2) =0, T1,Y,(2) = Ay, (t,) Ap (to)eXp(A4o (to)T) '
TToY;(7) =exp( Ay () 7) A7 (1) A(to)

18

(1.3.15)
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I,Y,(7) = _EXp(AA (to)T) Aa_é (t) As (t) Ay () Aa_ol(to) +

Hexp(A)(E = 9))(Aulty) + Ao Ao ) A1) )exp(Ag 1)5)cs,

Yao(t,t,) = epr(Ai(G) - A(0)A (0)A(0))do

f

J, (1.3.16)

Yao(t ,t,) =—A () A (t,)Y o(t.t,) ,
Vzo(t,to)=—exp[j (A(o)—Az(aW(a)As(o))da}-Azo(to)AAéao),
)

V“O (t 1t0) = _A;l(to)Aa(to)Vzo ('[,'[0) .
For the matrix I1,Y,(z), i=2,3,4 the following estimated holds on the interval
(0,0) [18]:
I (z)|<C-exp(-pz), (20, p>0, i=234). (1.3.17)

Proceeding similarly with the terms of the expansion of the order x" can be

with respect to t write the following:

dY—lp—Ai(t)le(t,to)JrAz(t)\?sp(t,to), (1.3.18)

at

d;t3p = As(t)vlp(tvto) + A4(t)vsp(t’t0) '

dzt = AWMz (L) + A 1Y (tL),

dY;t,p_l =AY 25 (t,t,) + A, ()Y 45 (t,1,) , with regard 7 :

19
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% 4, (0) ngYs(T) = Ay (t)TT, Y, (7) + A ()T, Y, (2) + dy (2), (1.3.19)
T T

dI1,Y,(7) dI1,Y,(7)

SR (), 2 = AT+ Ap)ITY(0) + ().

where d,, () =S AL Y@+ S AL @Y,

o 2) = Ay Y0+ A TV + 3, Ay (TY,E),
()= Ay N+ 3 A GITY),

1 ()= AT (0 + 3 Ay (T V(D)3 Ay (T Y (0).

The initial conditions for the equation (1.3.18), (1.3.19) is determined by the
condition:

Yip(ty,to) +T1,Y,(0) =0, Yap(ty,t,)+11,Y,(0) =0, (1.3.20)
Yap(ty,to) +T1,Y,(0) =0, Yap(ty,to) +11,Y,(0)=0.

Suppose now that defined terms in the expansions (1.3.7) up to order p
inclusive, i.e. obtained the following partial sums

Yip(t,to,y):i[?ij(t,to)+njvi(r)]yi, i=12,3 (1.3.21)

1 Pr— _
Y4p (t,to,,u) = ;H—1Y4 (T) + ZI:Y4] (t!to) +HjY4 (’Z-):|:uJ .
j=0

Then solutions of systems of equations (1.3.4), (1.3.5) may be represented as

Y, (b, 1) =Y, (b, ) + A (L 1), 1=1,2,3,4. (1.3.22)
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Thus, if the conditions | and Il, that for sufficiently small values of the

parameter x for matrix functions & (t,) and I7,Y,(z) will we have the
estimates:
&t )| <CuP™, 1=1,2,34, telt,t], (1.3.23)
|1, (2)| < Cexp(-p2), =0,
where C, # -const.

Now from the decomposition (1.3.7) select terms which form the zero-order
approximation of the transition matrix Y (t,t,z) . Zero approximation is denoted
by Y,(t,t,, 2) . Consider the degenerate system, which is obtained from (1.3.1)
at =0

x=AM)X+A )z, 0=AMt)X+A,(t)z. (1.3.24)
If after x(t, z2) = X(t, ) + TIX(z, &) and z(t, z2) = z(t, z) + I1z(z, z) denote the
solution of the Cauchy problem (1.3.1), and through x°(t) and z°(t) solution

of the degenerate system (1.3.24) provided x(t,)=x°, then the conditions of

theorem Tikhonov, we have
X(t, 1) =x° () + O(), z(t, 1) =2°(t) +11‘Iflz(r) +0(u), (1.3.25)
MU

where te[t,,t,], il‘lflz(r) - the first term of the expansion frontier function
7]

Iz(z). Applying this provision to the problem (1.3.2), we can write the zero
approximation Y, (t,t,, £) transition matrix Y (t,t,2) , which gives a uniform

asymptotic accuracy O(w) at all of interest to wus time interval
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exp[]/\)(s)ds] 0

t
Yo(tity, 1) =
t-t,

U

t—t
7]

The continuity of the matrix A(t), i=1,2,3,4 on the interval [t,,t,] follows

—Aﬁ(to)As(mexp[JAo(s)ds}exp(m(to) ]Af(to)Ag(to) exp[Aa(to)

t

that at each point te[t,t ] derivative of the function M(t):j,%(/i)dﬂ, the
t()

dM (1)

upper limit is equal to the integrand function A,(t), i.e. &

A1)

We have the following

Theorem 1.3.1. Matrix Y,(t,t,, ) is the solution of the matrix differential

equation
Yo (6t ) = A (OY, (b, ), Yyt t,)=E, ., (1.3.26)
At) 0
e AR S WALAO AW A |

Proof. We represent the matrix Y, (t,t,, ) in the form

Y, (tty, 1) =VYo(t,t,, V2, (1.3.27)
jAo(l)dl
here V ( = OJ Yt )= & 0
w = _ ’ l 1/1 =
_AAl(tO)A%(tO) Em ° ’ N(to)[ﬂj
e H
_ AL 0
We introduced the notation A(t, «) = 0 A, (t,)
7]
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Then differentiating both sides of (1.3.27), we obtain

dY (tty, ) _y, d%(t,
dt d
=VA(L 1)V Yo (61, 1) = A (L )Y, (L8, 40)

Q.E.D.

tto’ﬂ)V’l =V A(t, 12)Y, (tty, )V 2 =V A, )V VYot ty, )V L =

At t=t, Y, (t,,t,)=E

n+m?

Theorem 1.3.2. If the condition (1.1.2), then the matrix A.(t, ) defines a
system for which there exists an integral manifold

Z=-A"(t)A)X+2. (1.3.28)
The movement, which is described by the system
X(t) = A ()X(), X(t,)=x°, (1.3.29)
HI(t) = A (t,)Z(1), 2(t,)=2°,
where 2° = A, (t,) A (t,)X° + 2°.

In this case, there is a limit relation |imzt,«)=0 or

limZ(t 1) =-AZ ) AG)X O =2°0).
Proof.
Indeed, the system  y(t)=A(t, 2)¥(t), yt,)=y°,  where
y(t)=col(X(t),Z(t)) in expanded form is written as
X(t) = A, (OX(), X(t,)=x, (1.3.30)

z*(t)=—Aﬁ(to)AS(tM(t)ﬂt)+%A3<to)m)+%A4(to)za), 7(t,)=2°

In view of (1.3.28) from the second equation of (1.3.30), we

obtain
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HE () = p1(~ A ) At X () + 2(8) ) = —2A (1) Ayt ) A DX (1) + Ay (1)R () = Ayt )X(1) + Ay (t)2
or wi(t)=A,@t,)Z(t), Z(t,)=2°, where 2°=A"(t,)At,)x’+2z° . This,
together with the first equation (1.3.30) gives the system (1.3.29) and its

solution can be written as:

X°(1) =exp([| ADDIX, 2°(t, 1) =exp(A, (L)(E-1) ] 1)2° or

Z°(t, 1) = = A (t) A (t) X7 (1) +exp(A, (L)t —1,) / 1) -
By hypothesis, the eigenvalues A (t,) matrix A,(t,) satisfy the inequality

ReA(t,)<—y <0 and x—0 we get the specified limit relations. At u<<1

(t-t)
will have the representation z°(t, ) =z°(t)+O(e” “ ), y>0.

1.4 Converting Matrix Transition on the Integral
Manifold

We now state and prove a theorem which gives a formula of the transition
matrix of the system (1.2.1) and allows you to split the state vector of the
system to slow and fast components.

Theorem 1.4.1. Let the matrices @(t,s,u) and W(t,s,u) are transition

matrices of homogeneous systems >‘<=A1>?, u-Z=A,-7 ie. they satisfy the
equations

D(t,s, 1) = At ) D(t,s, 1), D(s,s,1) =E,, (1.4.0)

s, 1) = A )Y Es,u), Y(s,8,0)=E, [ i, (142)

where matrices A (t,z) and A,(t, ) are determined from (1.1.18). Then the

transition matrix Y (t,s, ) systems (1.3.1), the corresponding system (1.1.1),

can be represented as
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Y(t,s, 1) = M (t, )G(t,s, )M (s, 1), (1.4.3)
where matrices M(t,z) and M7'(t,z) are determined from (1.1.12) and
(1.1.13), respectively;

G(t,s, p) =diag (D(t,s, 1), W(t,S, 1)), (1.4.4)

Matrix O(t,s, ) and W(t,s, ) will be called the transition matrix of slow

and fast subsystems (1.3.1).

Proof. Matrix Y (t,S, £) we will divide into blocks in the form of

3 Yl(t,s,u) 1Y (t,S,,u)
Y(t,s,y)—(Y3 (ts,u) p¥ (t,s,y)j' (1.4.5)
Then from the equation
Y (t,s,u)=A(tw)Y (t,s, 1), Y(t,s,1)=E,., (1.4.6)

we have

Y, =A )Y, + A )Y, Y(s,5,4)=E,, u¥,=A )Y, +A(1)Y,,
Y (s,8,1)=0 (1.4.7)

Y'2 = A&(t)Yz + Az(t)Yzw YZ(S,S,,u) = Em J ﬂY4 = As(t)YZ + A4(t)Y4 !

Y4(s,s,,u):%Em (1.4.8)

Now, in these systems, we make the change of variables
Y, =H(t, )Y, +Z, (1.4.9)
Y, =H(t, n)Y, +¥, (1.4.10)
where Y, =Y, (t,s, 1) , Y,=Y,(t,S,) , Y;=Yi(t,s,0) , Y, =Y,(t,s, ) ,
Y=Y(t,s,u).
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H(t, ) , Z=2Z(t,s,2) - matrices of order mxn , elements which are

regularly depend on 4. Then the system (1.4.7) takes the form:

Y = A®Y, + AOHE 2Y, + A0Z =(AQ +AOHE L)Y, + ABZ,
Y, =AY, +AMZ, Y,(s,5,4)=E,, (1.4.11)
H(H(E LY, +H )Y, +2) = AOY, + AOHE Y, + A 1Z,
(uH () + 1H (& DA )Y, + H (G ) A Z + 42 = (AR + AOHE )Y, + AMBZ
(uH (t 1)+ 1H (6 ) A )Y, + 4Z = (A0 + AOHE )Y, + (A D) — 4H(t ) A1) Z.
In view of (1.1.19), we obtain from the last equation
uZ = At )2, Z(s,8, 1) =—H(s,1). (1.4.12)
Substituting (1.4.10) into the first equation (1.4.8), we obtain
Y, = At u)Y, + A (D)W, Y,(s,5,1)=0. (1.4.13)
Differentiating function (1.4.10) over the t obtain

Y, =H(t, &)Y, + H(t, )Y, + ¥ . The meaning Y, substitute into the second
equation (1.4.8)

HH(E )Y, + uH (G )Y, + 2 = A DY, + AOH G L)Y, +A DY,

pH (L)Y, + pH (6 ) A (L )Y, + uH (& 1) A ()W + 1 =
(A () +AOHCE )Y, + A DY .

Given the ratio from (1.1.19) as a result we have an equation with respect ¥

4V = At u)Y, ‘P(s,s,y)zlEm. (1.4.14)
7]

Now we eliminate Z from the equation (1.4.11). For this we introduce the

matrix
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F =F(t,s, «) considering that the matrix H(t, ) already known

F=Y,+uN(t,u)Z . (1.4.15)
Then the systems (1.4.11) and (1.4.12) take the form:
F=A(tu)F, F(s,5,4)=E, —uN(s,)H (s, 1) , (1.4.16)
uZ = At 1)Z, Z(s,s, 1) =—H(s, 1), (1.4.17)
where matrix N(t, &) is determined from the second equation (1.1.19).

We now show that the matrices ', Z and Y, are defined in terms of
matrices @(t,s, x) and Y(t,s, ). By hypothesis 1.4.1 the matrices @ and ¥
satisfy equations (1.4.1) and (1.4.2), then the matrices:

F = ®(E, ~ uN (s /)H (5. 40) (1.4.18)
Z=—YH(s,u), (1.4.19)
Y, =j.d)(t,0',y)A2(0')‘l’(a,S,y)da, (1.4.20)

satisfy the equations (1.4.16), (1.4.17) and (1.4.13), respectively. This statement
for the first two relations is easily verified. We present the following lemma.

Lemma. Let the matrix N(t,z) (te[t,,t,], «>0) is the solution of the
second equation in (1.1.19). Then

t

1ICD(LU,#)/% (0)¥ (0,5 1)do=®(t,s, )N (s,2)— N (t, 1) ¥ (L5, ), (1.4.21)

S

Proof. Equation (1.4.21) can be written in the form

t

lJ.d)(t,a,ﬂ)Az (0)¥(o,s,u)do=—D(t,0,u)N(o,u)¥ (o, S,y)rs (1.4.22)

S
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Then from (1.4.22) obtain

d (CD(t, o, u)N (o, u)¥(o,s, ,u))
do

:—%d)(t,oz 1)A, (o) ¥ (0,5,1)-

Using one of the properties of the transition matrix, hence we have

d(N(ou))

. ‘I’(G,S,,U)Jr

—Al(O',u)(D(t,G,/l) N (o, u)¥(o,s u)+P(t,o,u)

+%Cb(t,a,y) N (o 1) A, (0 4) ¥ (0,5, 1) =—%Cb(t,a,,u)A2 (0)¥ (05, 41),

—A(t,y) N (t,,u)‘P(t,S,,u)Jr N (t,,u)‘P(t,S,y)

1~ 1
+= A (tu)¥(ts,u)+—=A (t)¥(t,s,u)=0
H H
Multiplying this equality on the right by the matrix d)(s,t,y) have

AN (1) = A (8N (8 1) = =Ry (8) = N (8 1) A, (8 2)

As a result, we obtain the second equation in (1.1.19), since by hypothesis
matrix lemma N (t, z) is the solution of the second equation (1.1.19). Therefore,
the formula (1.4.21) is true. Q.E.D.

On the basis of the formula (1.4.21), the expression (1.4.20) can be written as

Y, = ,u(cDN (s, ) — N(t,,u)‘{’). (1.4.23)

Differentiating function (1.4.21) to the ¢ and considering that N(t, z) is the

solution of the second equation (1.1.19), we obtain

Y, = uA (4 ) ON(S, ) + N(t, L) A, (t, 1)WY — uA (4 )N (L, 1) ¥
+ A ()W — N(t, ) A, (t, 1) ¥ =

= pA 1t )(ON(s, 1) - N(t, 1) P) + A ()Y = A (t, )Y, + A, (D).
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At t=s rom the (1.4.20) it follows that Y, (s,s, ) =0.

From the relations (1.4.9), (1.4.10), (1.4.15), (1.4.18), (1.4.19), (1.4.21) we
have: Y, = ®(E, — uN(s, t)H(s, 1)) + uN(t, ) PH (s, 1) ,

Y, =®N(s, 1)~ N(t, 1) ¥,

Y, = H(t, ) ®(E, - uN(s, s))H (5, 1)) ~ (B, — uH (ts)N(t 1)) PH (s, ), (1.4.24)
1
Y, = H(t, £)®N(s, 1) +;(Em — uH(t, )N(s, 1) Y.

Substituting the values of Y; (i=1,2,3,4) from (1.4.24) the right-hand side of
(1.4.5) we obtain (1.4.3). Q.E.D.

It should be noted that the system (1.2.1) may be replaced by an integral
equation (Cauchy formula):

y(t, 4) =Y (t,5,2)y(s, ,u)+jY (t,s, 12)B(s, z)u(s, w)ds +jv(t,s, ) f (s, p)ds . (1.4.25)

Using the relations (1.4.3), (1.1.26) from (1.4.25) can be easily obtained
integral equation, which is equivalent to the differential equation (1.1.25)

§(t, ) =G (t,t, 1) ¥ (s, y)+jG(t,a, 1B (o 1)u(o, y)dmje(t,a, u)f (o, 1)do (1.4.26)

where B(t,z)=M"(t,u)B(t, 1), T(t,u)=M"(t, 1) F(t, 1), °=9(t;), is

transition matrix G(t,t,, ) determined from (1.4.4).

Now suppose that the matrices d(t,t,,«) and ‘P(t,t,, 1) are transitional
matrix of the system (1.1.22) and (1.1.23). Along with the system (1.1.22) and

(1.1.23), we consider another system

X = A (DX + B, (0T + f, (1), X(t,)=X°, X(t)=%", (1.4.27)
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1Z. = AWZ +B,OT + (), Z()=7", Z(t)=2",
where

AMD=AD-ADOA OAR), B () =B 1)-A 1A (1)B,(),
fo ()=, (1) = A ()AL () f, (1), 2. =7+ AAX, (1.4.28)

X,Z - vectors of state variables of the degenerate system, which is obtained

from (1.1.22) and (1.1.23) at & = 0. Have the following theorem.

Theorem 1.4.2. Let A, (t), A,(t) - stable matrices and corresponding to

them transition matrices satisfy the inequalities

Dt t)]| < cexp(—m(t—t;)), [(t.t,, )| <cexp(—yt—t,)/ ). (1.4.29)
Then at m>1, O< <y, <1 and t, <t <t the eigenvalues value matrices
A(t, ), A,(t, 1) will be <close» to the eigenvalues of the matrices

A, (), A,(¢), in the sense of negativity their real parts, where

yozmin{i /4 } (1.4.30)

dc' dc

d= max L|A(0)] d,= max L,|A(0)|. (1.4.31)

ty<s<o<ts<t, ty<s<o<t<t,
At the same time we have the estimates:

(.t 1) <cexp(—-m(t—t,)), [¥(t.t,, )| <cexp(—p(t—ty)/ 1), (1.4.32)

where the m, =m-1, y, =y — ud,c, c,m,y - positive constants,

O(t,t,), P(t,t,, 1) - transition matrices slow and fast subsystems (1.4.27).

Proof. Let
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H(t, 1) =—A O A®) + uh(t, 1), (1.4.33)

where the h(t, «) satisfies the matrix equation

ph(t, 1) + ph(t, 1) Ay (t 1) = A (8, 1) + A, (L 1)L, ),
A (L, 1) = Ay (1) + 1A, (DN, 1),

A )= %(Aztl(t)As(t)) +ATOADA WD, AL =A0+aA OADAR -

In view of (1.4.33), matrices A (t, x), A, (t, 2) are defined as

At 1) = A1) + uA, (O, ), (1.4.34)
A () = A ) + 1A ) AR A ) — 1°h(L 1) A (L, ).

As shown in 1.2, matrix H(t, 2) is the solution of the integral equation (1.2.1)
and defined as the limit of a sequence of continuous functions in a closed

interval [to,tl], then can specify the number of g such that 0< g <4 in the

interim [t,,t,] there are limitations:

IH @<L, het ) <L, (1.4.35)
where the L, L, - positive numbers. Transition matrices @(t,t,,«) and

W(t,t,, ) may be represented in the form:

D(t,ty, ) = Dt ) + pp(t b, 1), (kg ) = P (Lt 1) + pnp(t. e, 1), (1.4.36)
where the o(t,t,, ), n(tt, ) - matrices functions, ®(t,t,), P(t,t,,z) -

transition matrices slow and fast subsystems (1.4.27).

The process of determining the functions ¢(t,t,, 2) and 7(t,t,, «) leads us to

clarify the main question: for sufficiently small values of the parameter 1, the
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eigenvalues of matrices A (t,z) and A,(t,z) will indeed be close to the
eigenvalues of the matrix A (t) and A,(t) respectively.

We assume that Aj(t) and A,(t) - stable matrix. Then the corresponding
transition matrices satisfy the inequalities (1.4.29). By assumption, the matrix

O(t,t,) and P(t,t,, ) satisfy the equations:

B(t,t,) = A ODEL), Ot,t)=E,, (1.4.37)

1Pt 1) = AP ), Pt ) =E, [u.  (14.38)

Then, taking into account (1.4.33), (1.4.36) from the (1.4.1) and (1.4.2),
obtain

ot b, 1) = A (OP(t,ty, 1) + A, (DN, 1) (D(t ) + ot by, 1)),
o(ty,t, 1) =0, (1.4.39)

(b, 1) = A On( 1, 1) — HE ) A O (P L, )+ Lt 1))
1(ty by, 22) =0. (1.4.40)

Equations (4.1.39) and (4.1.40) are equivalent to the following integral
equation:

oty 1) = [B(t,0) A (0)N(0, 1) (Bloty) + (o ty, 1)) do, (1441

t

n(tt, 1) = %j‘?(t,a,ﬂ)H (0, 1) A (0) (P (0 ty, 1) + pm(oty, 1) )do. (1.4.42)

f

We now define two sequences:

oo (tity, 1) = j&)(t, o)A, (o)h(o, ,u)q_)(O',to)dO', (1.4.43)
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o (g, 1) = @y (L1, 1) + ﬂj&)(t,G)Az(U)h(G, we (o, 1)do,

to

oty 1) = % [P0 M Aot o 14.44)

n (L, 1) =17, (L4, 22) +J.‘¥’(t,0', wWH (o, 1) A, (o), (o1, 1)do.

t

Investigate the convergence of the sequences (1.4.43) and (4.1.44).

We introduce the notation in the form (1.4.31). Now we estimate the total
members of the following series:

Do+ (0= Pos)r Mo+ 2 (11— 10n). (1.4.45)
n=1 k=1

In view of (1.4.31) from the (1.4.43) obtain

| < d,C? (t -t ) exp(—m(t —t,)).
[ — @0 < e ((t—t,) / 21)exp(-m(t —t,)).

By induction, we obtain the inequality
||¢n _(pn+1|| < ﬂnd;+lcn+2 ((t _to)n+l / (n +l)!)eXp(_(t _to))-

Of these estimates imply that the first row of (1.4.45) converges at

u<1/(d,c), and evenly and as a majorant series supports a number of
d,C° (t—ty +(t—t,) / 24 (t—t,)* /3L ...+ (t—t,)" / nk+ ... )exp(-m(t —t,))
which is the sum of d,c?(exp(t—t,)—1)exp(-m(t—t,)).

Consequently, there ¢(t,t,) - limit of the first series (1.4.45) exists. Function

#(t,t,) satisfies to the equation (1.4.41) and it satisfies the inequality
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o] < d,c? (exp(t —t, ) —L)exp(-m(t —t,)), (1.4.46)
At <1/ (d,c).
Similarly, from (1.4.37), we have ||, ] < 1/ z)d,c* exp(—(y(t —t;))/ ) and
77, =102 < @1 20)d7 ™ (£ = 1) 1 (n+1)!)exp(—(r(t—t,) / ).

Then there 7(t,t,, ) - limit of the second row (1.4.45) exists. The limit
function 7(t,t,, ) at x>0 is a solution equation (1.4.44) and in this case we

obtain the estimate

7] < (c/ ) (exp(dic(t—ty)) —L)exp(—((t —t,))/ ). (1.4.47)

Now, using (14.29) and (1.4.46), (1.4.47) from the (1.4.36), obtain (1.4.32).
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