Chapter 3

Method of Moments in the Theory of Singularly
Perturbed Systems






After applying the method of moments to solve the problem of optimal
control of linear systems with lumped parameters by Krasovsky N. N. [86] this
method has been successfully compiled and turned out to be a very strong unit
study many tasks of control. In this chapter will set out how to use the theory of
moments to the problem of control of singularly perturbed systems with a
variety of optimizable functionals.

3.1 Statement of the Problem on How to Manage the
Problem of Moments

Let the behavior of the controlled system described by the equations

x=AOx+A Oz +B [Ou+fM), x(t)=x", (3.11)

uz=AOX+A Mz +B,Ou+ @), z(t)=2" .
where x(t)eR", z(t)eR™ - wvectors of state, u(t)eR" - control,
f,(t)eR", f,(t)eR™ - constantly operating outside forces; tel[t,,t], # -

"small" positive parameter (0< u <<1).

It is assumed that the system
X = A ()X + By (t)u + f,(t) (3.1.2)
where A, (t) = A1) - A1) ATOA®D), Byt =B, (1) - A1) A’DB,(W).
fo(1) = f,() - A, (1) - A (1) T, (1)

is completely controllable and

Re A(A, (1)) <O. (3.1.3)

It should be noted that some problems of control chosen value which
characterizes the costs of resources for the implementation of the process
control. Usually is required to achieve the desired result so that the value of this

67



The Optimal Control Algorithms in Systems with Different Rates of Motion

quantity was minimal and this value does not exceed certain limits. This value
is called the criterion of optimality or intensity [86] control and denote it by the
symbol J(u).

Let any normed space of functions by symbol M{} and will use it whenever

the norm of the space of functions is not fixed. The symbol R, we will denote
the perturbed problem, a R, - unperturbed problem of optimal control and at the
same time J/, J; — the minimum values of the criterion of optimality in

problems R, and R, respectively.

We formulate the following problem R, : Let was selected criterion of
optimality J,(u,), which can be interpreted as a norm p; (u,) functions
u,(t) =u(t, ) in space M*{uy}.

It requires among admissible controls [86] to find the optimal control uft ®,
which puts the system (3.1.1) from the initial state x(t,, ) = x°, z(t,, 1) = 2° to

the final state x(t,,z)=X",z(t,x)=2" and thus having the smallest possible

form p,(uU?).
This problem with the =0 responsible task of smaller dimension R, :

J(@ > min.
X = A, ()X + B, ()T + f, (t), X(t,) = x°,
7 =-A"(O[A; ()X +B, (0T + f, ()],

where fo(t) = f,(t) — A () - A (1) f,(t) .
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As shown in Chapter 1, the system (3.1.1) may be replaced system with
separate movements

%= At )%+ Bt u+ F(t, ), K(t) =%,

s 2 : (3.1.4)
pz= At 1) Z+B,(t, pu+ f,(t, 1), 2(t,) = 2°,

where

A=At ) =At)+AOHE L), A1)=Atw)=At)—xHE A D),
B,(t) = By(t, 1) = B,(t) + N(t, 1)B, (t, 1), B,(t) =B, (t, 1) =B, (t) — uH (t, 11)B,(t), (3.1.5)
fL0) = fi(t, ) = £,() = N(t, ) T, (t, ), T,(t)=T,(t, ) = F,@®) — uH (t, 1) T, (1),

R =2(u)=x"— uN(ty, 1)2°, 2°=2"(u)=2° —H(t,, )x°, x°,2° - given

vectors.

For small values of the parameter 4 , matrices H(t)=H(t, x),
N(t)=N(t,«) is having a dimension mxn, nxm are the solutions of

singularly perturbed equations (see 1.1)

uH + uHA () = A () + A,(OH, H(t,)=H°, (3.1.6)
uN = uA N =-A, () - NA(1), N(t)=N", (3.L.7)

and H(t, ) >-A OA®), N ) —>-ADAD), at x—0.
Let d(t,s, ) and W(t,s, ) are normalized at the point t=s (t,s€[t,,t,])

transition matrices of homogeneous systems X = A (t)%, uZ = A, (t)Z.

We write the law of motion of the system (3.1.4) by the Cauchy formula:

X(tu) = 0(tt, )X + [ DL, w)[By(s,)u(s, ) + (5. 0, (31.8)
b
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2(tu)=Y(t.t, )2 +£j‘1’(t,s,y)[l§2 (s, pu(s, u) + fz (s,)]ds. (3.1.9)

tO
In view of (3.1.5) for the functions (3.1.8), (3.1.9) can be easily checked by
limiting relations Ilrpi(tﬂ)ﬂ(t) "mz(t'ﬂ):_A;l(t)(Bz (t)U(t)+ f (t))
>

u—0 !

where X(t) - the vector of state "slow" subsystem (3.1.2). We introduce the

following notation:

My (6,5, 1) =Dt 5, 0By (5, 40), (S, 1) =W(t,5,10)B,(5, 1) . (3.1.10)
Definition. Matrices h (t,s,«) and h,(t,s,x) , each line item form r—
dimensional vectors h; (t,s, ), hy;(t,s, ) will be called the "slow and" fast
"pulse transition matrices of the system (3.1.4) on the impact of

u,(t)=u(t, w).

Comment. In the future, we will assume within the meaning of the impulse

response matrix [86] that h ®(t,s, 1) =0, h,(t,s,z)=0at t<s.

In view of (3.1.10) relations (3.1.8) and (3.1.9) can be written in the form

K(t, 1) = DL, t, ) X° +jc1>(t,s, 1) f.(s, p)ds +jh<1> (t,s, mu(s, )ds  (3.1.11)

Z(t,ﬂ)=\y(t,toy)z°+lj\11(t,s,y) fz(s,y)ds+ljh(2)(t,s,y)u(s,u)ds. (3.1.12)
H J754

Substituting the boundary conditions X(t,, ) =%",2(t,, ) =2" in (3.1.10),
(3.1.12), integral equations
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[husuts mds—ay (), i-1n (31193

[y (65, 20U, s = gy (1), 1 =1 (3.1.14)

4

where at, (1) =X = 8" (8,8, 1) % = [ (1,5, 1) (s 1),

fo

» ) » 1 Y o -
o, (W) =7 -y (.1, 1) Z; —;Iw“] (t,,8, 42) T,(s, 1) ds,

fo

X =X (1) =X =N (4, 1)7}, 2t =z} () =2t - HY (b, )%,

X', 2} - given numbers, Aty 20) T (1, 1) N (L, 20), HUT (8, 12)
- vectors - lines whose components are formed from elements of the rows of

the respective matrix @(t,,t, z2), Yt b, ), N(t,x), H(t,p).

In accordance with the wording of the problem R, vector function
hi (b L ), by, (q,t,ﬂ ) (izm;jzl,_m) can be considered as
elements of a space M {hﬂ (t) } and the vector function u(t) depicting the

control as elements of the space M"{u, (t)} adjoint to the M {h, (t)}.

Then the problem R, is reduced to the problem of moments [42]. Left side

of (3.1.13) and (3.1.14) are the linear operation g[hﬂ (t)] performed on the

elements h% (1) =h; (t,,t, ) (i=1n), h(t)=hy (t.t,z) (i=1m).
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We formulate the problem of moments for the task R, :

Is required to find the linear operation g['h, (t)] certain space M {h, (t)},

satisfying at predetermined elements hf,li) (1) (|=1_n) h® (t) (j:l, )

]

conditions

g[h}}ﬂ (t)]=a1i, i=1n; (3.1.15)

g[hfj) (t)}:/‘%w =1

and at the same norm p, [g], operations g[hﬂ (t)], was the lowest of the
possible.

Each linear operation that makes sense for functions h, (), from M {h, (t)}

is generated by a control u,(t), in integral form [42]. Therefore, interpreting

the expression on the left side of (3.1.13) and (3.1.14) as a linear function of the
operation generated u,(t)=u(t,) can be replaced by the problem of

determining u, (t) problem of moments, i.e. the task of determining the
operation g [hﬂ (t)] satisfying (3.1.15).

Then, in this case, according to the problem of moment [86], we need to find
from family vector of function of the form

h(t,,t, 2)=1h (t,t, )+ L, (4,4, 1) (3.1.16)

function h°(t,,t, ), at which the minimum

=minelhy (t)+1Lh ()]
bl (3.1.17)

—py[l W (0)+ 190 ()] = SIS (1)
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at ey + 1o, =1,

where
L =(hylipehn) 1 =(lulpronnly ), WS () =h (.t 1), WP (t)=h,(t,t, ),

p,[h, (t)]- norm of a function in the space M{hﬂ (t)}

Function h°(t,,t, ) we call the minimum function.

Minimum function hy (t,t) for the task R, is determined from the condition

Py = mlin[ll'ﬁo (U]= o[ Ry ()] = pIA° (1)] (3.1.18)

at I, =1,

where hy (t)=hy(t,t) =D, (t,,t)By(t), & =x'—D,(t,t)x° —tjcio (t,7) fy()dr,

h° (t) =1y (1).

3.2 Control with Minimal Power

Consider the following problem of optimal control: it is required to find a
control

u=u(t.u) (<R
transforming system

x=A0)x+ A1)z + B, (Ou+ f,(t)

. (3.2.1)
pz=A X+ A1z +B,(t)u+ f, (1)

from the initial state
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x(t,)=x", z(t,)=2° (3.2.2)
to the final state

xt)=x", z(t)=2' (3.2.3)
provided that the norm of

H“"L,J = max|utt. ) (3.2.4)

to<t<t,

has reached the minimum value. Here xeR", zeR™ ueR! x - small

parameter.

Suppose that for the problem (3.2.1) - (3.2.4) the following conditions:
1°. Matrices A(t) (i=14), B,(j=12) - uniformly bounded and
uniformly continuous together with its derivatives at t e[t,,t,]; matrix A,(t)

nondegenerate, i.e. exist A;*(t).

2° Vectors L(t), L,(t),..., L.(t) are linearly independent, at least at one
te(t,t), e iZ::viLi(t*):«tO at iZl:viZ #0 | where
L, (t) = By (1) = B,(t) - A, (D A, (1) B, (1),

d,,

o A =AM -AGA M)A, k=23..n

L®) =AML -
3°. At point t=t,
rank{B, (t,), A, (t,)B, (t,),..., A’ *(t,)B, (t,)}=m; (3.2.5)

4°. Roots A (t) of characteristic equation of the matrix A,(t) subject to

inequality
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ReA(M)<-y<0 (i=1m; teft,t]) (3.2.6)
In case, when A(t) (i=14), B;(J =1,2) - constant matrices, instead of the
condition 1°, 2° we make the following demands:

5°. rank{B,, A,B,,..., A" 'B,}=n; (3.2.7)
6°. rank{B,,A,B,,...,A"'B,}=m. (3.2.8)

When the condition 1°, 4° in the system (3.2.1) can make a complete
separation of movements. After simple transformations (See Chapter 1), we

obtain:

X

At )%+ By(t wu+ it ), (3.2.9)
pi = A 1)Z+ B, (t p)u+ T (t, 1),

t,)=x° 2(t,)=2° (3.2.10)
(t)=x, 2(t)=7" (3.2.11)

where A(t, ) = A1) -AOHEG L), At w)=A0)-LHE DA®),

B,(t, 1) =B,(t) + N(t, 1B, (t,), B, (t, 1) =B, — uH(t, 10)B,(),

fit )= f@O N0, ftw)=F,0—uHE L)),
X=X+ uH(t, 1)z, Z=z-H(t, )X,
X' =x"+uH(,, 1)Z", Z'=7"-H(, X", v=01..;

Matrices N(t, ) and H(t, &) are solutions of the equations

uN— AN =—A, —NA,, (3.2.12)

uH + uHA = A + AH. (3.2.13)
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Matrices elements N, H regular dependent parameters. As shown in Chapter
1, the matrices N and H of (3.2.12), (3.2.13) are uniquely determined, whereby
instead of the problem (3.2.1) - (3.2.4) to consider the problem (3.2.9) - (3.2.11),
(3.2.4). This problem reduces to the problem of moments: to find

22 = min[Bi(e. ' 0. p+ Bilo, ¥t 0, ldo,  (32.14)

Pa g
on condition
C/p+4C,q=1, (3.2.15)
where ®O(t,s,z) and W(t,s,z) (t, <t<t) - normalized at the point

se[t,,t] the fundamental matrices of  homogeneous  systems

X=Ax, wZ=AZ respectively;

C, =X -®(t,t,, )X, C,=7"—¥(t,t,1)2° (3.2.15a)

For the matrix W(t,s, ) the condition [42]

(s sce (9]

forall t,seft,,t,], t=s, when C,y, >0—const.

If we assume that in some way solved the problem (3.2.14), (3.2.15) and thus

found vectors p=p°, q=q°, then it will be known the minimum function
ho (t, 1) = BJ(t, ;) @' (t,,, 1) p° + By (t, 1) W' (8,1, £2)Q° (3.2.16)
and the number of pj > 0.

According to the rule the problem of the moment [86], we have to define the

desired optimal control u = u; (t, ) based on the maximum condition
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t "
J i o ¢, )t = a3 ¢ st pdt =1 (3.2.17)
fo U
1 1
at maX|U(t,#)|=—0 or else when |u(t,/¢)|=_0
to<t<t, P oy |

Maximum integral in (3.2.17) will be achieved if each time t integrand
h°(t, ) u(t, ) will be maximum. Thus, optimal control uj(t,.) must be

determined from the condition [42]

by (¢, 22)uj (& 22) = miaxhy (& a)u e, 1) (3.2.18)
at |u(t,ﬂ)|si0=wg (t, <t<t). (3.2.19)
Pp

Since the system (1) non-singular, and hence the function hg(t,,u) - a

smooth [86], i.e. it is at a given time interval is zero only in a finite number of

isolated values t =t;. Then the solution of problem (3.2.18), (3.2.19) delivered
by the expression
Uy (t, 12) = @psign(B](t, L)' (4, 1, 12) p° + B; (t, 1) ¥'(8,,1, £0)0° (3.2.20)

(t, <t<t)
Function uz(t,,u) is defined everywhere except for a finite number of

isolated values t =t;, where the function standing under the sign of <sing>

vanishes.

At =0 from (3.2.9) - (3.2.11) we obtain

X=AMX+B,MOT+ 1), X=(t)=x", v=01.; (3.2.21)
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7=-A) (A 1)K + B, ()T + T, (t)) (3.2.22)
where A =A -AA'A, B, =B -AA'B, f,)=f-AA'f,.

The resulting system is called a generating system [26]. It should be noted
that the solution of (3.2.21), (3.2.22), (3.2.4) can not serve as a zero
approximation of the problem (3.2.9) - (3.2.11), (3.2.4) as the in the vicinity of

the boundary interval [t;,t,] there may be finite number of isolated points (to

M pieces), which must go through the process of switching control action.
Also in this case, the issue of system switching from one state to another for
rapid subsystem (3.2.9) remains open. So first of all we need to specify a system
for which the optimal solution of the problem is well-defined zero
approximation of the problem (3.2.9) - (3.2.11), (3.2.4).

Due to requirements regarding A (t) (i=14) system (3.2.1) (see the

condition 1°) solutions of equations (3.2.12) - (3.2.13) are limited and at zz —0

will be performed:

At ) > AW, Altm)—>A®), Bt ) —>B(t), Byt —B,(),
fit, ) > £, F,(t) > f,(0).
Consider the system
X = A, ()X +B,)T + f,(t), X=(t)=x" (3.2.23)
X, =A)Z +B, )T+ f,(t), Z=()=2" (3.2.24)
where z, =Z + A (L) AL)X, 2. =2"+ A L)AR)X, v=01...

The system (3.2.23), (3.2.24) approximates the system (3.2.9) - (3.2.11) with

accuracy of the order of smallness O(x) and it is obtained from (3.2.9) -

(3.2.11) in the following approximations:

78



The Optimal Control Algorithms in Systems with Different Rates of Motion

H(t 1) = Ho () =—AOAD, N2 =N 1) =-AOAD), Al +z)=A),

B,(t, +71) = B,(t,), —oo<7r<0.
For the new system the minimum function takes the form
3 AW 3225
ho(t 1) =h (6, .0 1) = By )P (L, P + By(tye  “ g, (3229

where @'(t,s) - the fundamental matrix of the homogeneous system

X =AX; p° g° -solutions extremal problem: find

4
5 =min]htp.q, x)|dt (3.2.26)
PO ¢

on condition
C.)p+Cig=1 (3.2.27)

_ _ _ t —
C =x-0(t,t)x°, C,=z-e*¥" =210z, 7,=" Ly (3.2.27a)
U

Optimal control (3.2.20) for this case is written as

U2t 1) = wfsign( Byt s) ', O P° + By (t)e 7g°),

_t, 1 (3.2.28)

t
r=—2 1, <t<t, o) =—.

0
Control (3.2.28) transfers the system (3.2.23), (3.2.24) from the initial states
(x°,z°) to the final state (x',z') and it is the function of the relay. Minimum
function h(t,zz) (3.2.25) may be zero in the vicinity of t,,t , because it

contains a function of boundary layer type, whereby the control (3.2.28) has a
complete set of switching points, which is not always possible for the
generating system (3.2.21), (3.2.22). Rewrite the equality (3.2.27) in the form of
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Zc‘” D, +,uZC(2)qk 1. (3.2.29)

i=1
We now show one of the approximate methods of determining the optimal

parameters p°,q° (i=Ln; k=1m).

Assuming that the vector C, (3.2.27) satisfies C® =0, from (3.2.29), we

obtain

_ 1 n-1 _ m _
Pn :F(l_zci(l) P; _ﬂzcz(Z)Qk)- (3.2.30)
n i=1 k=1

The following functions h, (t, z2) =h,(t, p,q, &) standing under the sign of the

module in (3.2.26) can be represented as

By()®'(t, ) p=K(t.t,)p Z (tt)p, (3.2.31)

By()®'(t, ) p=K(t.t,)p Z (tL)p, (3.2.32)

-4

where 77(—) function of the type of the boundary layer, in other words, for
M

it has the estimate ||| <C exp(y(ﬂn, C,y >0—const .
7,

In view of (3.2.30) - (3.2.32) function h,(t, «) is written in the form

hy (t, 12) =, (t, . T, 41)
3.2.33
=Kl [K 1) -l “)é;jm[n'(t'tl)—uK"(tl’t)ég]q, 5239
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r_ ~' _(C® _(1) ~ @)
where 77" = (17,175, 7), - G =(C7,C57,...,C),

C;=(CP.C....CP) T=(T..T,-- )

In this case, the problem (3.2.26), (3.2.27) the relative minimum is reduced to
the problem of the absolute minimum of the function

Po(P. G, 1) =j|ho(t, p.d, 1)t (3.2.34)
b

Note that for the functions hy(t,p,q, ), 0,(P,q,x) at u—0 holds the

following limit relations:

limh, (¢, 5,0,4) =R (4, B), limpy(t, .0, 4) = po(P),  (3:2.35)

where R, p) = EﬁﬁL{wmm—Kﬁﬁ)jn %w)ﬂh“mw

Numbers P, =p° (i=Ln-1), G =g° (k=1m) determining the

—0 —O

minimum function h{(t, p°,G°, ) will satisfy the system of equations

% J(K (t4) ((1)t1) C{}signho(t, p,q,.)dt=0, i=Ln-1,

0p, | t—t | uK, (b))~ | & =
Yo _ =212 C? (signhy (t, P, T, 4)dt =0, k=1,m.
. J(ﬂ( P o ignhy (t, P, 1)

(3.2.36)

As stated in [86] for the solution of this problem on the conditional minimum

is considered the differential equations for the unknown parameters

I, (k=1M —1) (in this case, relatively p,,q, )

%z_gw, i=1LM -1 (3.2.37)
dv ol,
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where &> 0- coefficient of proportionality determining the "shutter" speed. In
drawing up the differential equation (3.2.37) introduced a new parameter V,

which is interpreted as the time counted at the point of the movement | ={l.}

along "the descent of the curve" by some arbitrary point 1 ={l} on the
M

hyperplane ZCiIi =1 to the desired point 1° ={I°}, numerical integration by
1=1

using the recurrence relation

N _g[w]w AV. (3.2.38)

From the second equation (3.2.36), we note that arbitrary aan (k=1,_m)
k

defined functions faster components h,(t, p,q, ) .

Then, in this case, will consider the following singularly perturbed

differential equations respectively to p,, G, (i=1,n—L' k=1,_m)

i __op A4 9 (3.2.39)
dv op; dv oa,
where the partial derivatives % a—’[_JO are defined by (3.2.36). For the
Pi Ok

numerical integration of the equation (3.2.39) can propose the following process

of successive approximations. At x=0 from (3.2.39) we obtain the reduced

system

b __, o[ p), (i =1n —1). (3.2.40)
dv p;
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Equation (3.2.40) can be integrated numerically using the relation (3.2.38),

identifying all p, = p’ (i =1,n—1) and leaving them in the equation

da, . 0P, ( po,q) —

(S - , k=1m (3.2.41)
dv oa,
and making the substitution 7 = =t the right side of (3.2.41), we obtain:
U
da, e bOc? | -
d—\;:—gj‘{nk(a,,u)—,uc—(l)k signhy (o, 1)do, (3.2.42)

where

I:;(O'v )= ho(@l +1, 5017%‘): ho(t1v 5O’q)+ ho (t,. B, q)ops +...

n bOc?]  (3.2.43)
C 1) bnl) +Z|:77k (O-’lu)_lu C(l)k ko
k

Now, again using the relations (3.2.44) can be integrated into the
equation (3.2.42).

After the necessary calculations will be known q,f’(k:l,_m). Number p,°

calculated using the formula (3.2.34). Number E)Oozio characterizes the

Lo
amplitude of the control action.
Suppose now that for sufficiently small x(0<u<z,) and the boundary

points (xo, z°), (xl, zl) following conditions are met:

a) the angles of intersection of the graph of (3.2.25)
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hy” (t,2¢) =y (t, p°,G°, 1) = By (1) D5 (1.1,) P° + By (t,)e HW-wnge (3.2.44)

to t axis nonzero;

o| %P0 Po
b) Jacobian \ 6p ' &g ) at p=p°,§=q° nonzero.

a(p,a)
When the above conditions function hy(t,z)=h,(t,p,d, ) vanishes only
for a finite number of isolated points in time t:tj(ﬁ,q,ﬂ)(jzl,_s), are

defined as a  function of  the magnitude unambiguous

D a i=1n 1m ; ot a; o
Biv Qs (l =1n; k=1, m) and the partial derivatives —, — at
o oG

B=p" G =9° (i:ﬁk:l,_m), exist as it follows from the implicit
function theorem.
Even under this condition from the same implicit function theorem implies

that ﬁi"(i :L_n) are continuously differentiable functions on Ci(l)(i :L_n), and
q.’ (k :1_m) are continuously differentiable functions on

c® (i=1n), ¢® (k=1m). Then for small changes AC", AC,® will

be small changes in variables p,°, @,°, where are the estimates:

|Ap°| <1 Ac| (3.2.45)
1ag.%] <, (||| + Ac, ) (3.2.46)
Aa| <1 (Jac]| +[Ac,|) (3.2.47)

where r, - positive numbers.
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Changing the minimum function h? (t, 2) depends not only on changes in the

values p°, G, and members of unregistered matrix decomposition d(t,t,z)
and w(t,t,2) . Imagine matrices ®(t,s, u), w(t,s, ) in the shape of:

D(t,s, 12) = D(t,S) + ud(t,s, 1) (3.2.48)

w(t,s, ) =eMOE L 5t s 1) . (3.2.49)

It is easy to show that for sufficiently small values u < 4° functions ¢ and

& satisfy the inequalities

#(t,s, p)|<d,C*(e"™ —1)e ™ (3.2.50)
I |<d,

_y(t=s)

Hg(t,s, p<CEse -1e (3.2.51)

. 1
where m>1,d.,d,,C—const, 0< < £°, #° =min ——.
1, Uy H= U H {dzc d1C}

Then, for any vectors p and q hyperplane of (3.2.27), in particular in

p=p",q=0° function h,(t,p,q,) (t, <t<t) can be represented as

hy (6, P°,0°, ) =y (t, P*q°, 1) + O(u +€7), (3.2.52)

t-4

where 7 =—2 <0,y >0-const.
y7i

This means that the function hﬁ,(t,ﬁo,qo,y) has as many zeros as had

h, (t, p°,G°, 1). These zeros are placed with precision O(u+€’") (the distance

from the boundary point t=t, with precision O(x)), near the respective zeros
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h, (t, 8°,G°% 1). In view of (3.2.48) and (3.2.49) from (3.2.15a), (3.2.27a), we

obtain
AC, = u(N(t,, )7 — p(t, ty, 1)X°
— D (b, )N (t, ) 2° — gty tg, )N (b, 2) 2°,

= A7 | o _ ) - 2°
AC, = u(e Ml 0~ Hod) - Etod? )
z_,UHl(t'lhu)X )

where H,(t, «) - limited function, which appears from the relation:

(3.2.53)

to_hso.

H(t, 1) =—A O A () + uH, (t, 1), 7 =

Considering that the matrices N,H limited and functions ¢@,& satisfy

(3.2.50), (3.2.51), from (3.2.45) - (3.2.47), we obtain:

|Aﬁi° |<mu, ‘Aqk0|§mz,u, ‘Aw§|£m3,u, m,,m,,m,,» >0—const. (3.2.55)

These estimates suggest that for all t, except for a set Q values t, a measure

which satisfy the inequality

c(@Q)<m,u. (3.2.56)
Control ug(t,z) differs from the optimal control uj(t,x) the original

problem with the accuracy O(u) , i.e. will be performed the following

inequality:
‘ug —u§| = ‘Au§| <m.u, m,,m,—const. (3.2.57)

Hence we have the following conclusion:
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Theorem 3.2.1. If the conditions a), b), then for sufficiently small values

< =min i L
H< Hy| Hy d,C'd,C

1) optimal control u,(t,) (3.2.20) can be approximated by a control

ud(t, z2) (3.2.28) with precision O(x) ;

2) at #—0 both control - uﬂyug one tends to the same limit, i.e.
limu, (t, z2) = limug (t, 22) =u" (t).
1—0 1—0

This item is the optimal solution for the problem of the generating system
(3.2.21), the order of which is lower than (3.2.1). All these statements are true

for all t, except for a set Q values, a measure which is of the order of

smallness O(u) .

In conclusion, it should be noted that the above method is easily offended by
vector control case.
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