
 

 

 

 

 

 

 

 

 

 

 

Chapter 3 

Method of Moments in the Theory of Singularly 

Perturbed Systems 
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After applying the method of moments to solve the problem of optimal 

control of linear systems with lumped parameters by Krasovsky N. N. [86] this 

method has been successfully compiled and turned out to be a very strong unit 

study many tasks of control. In this chapter will set out how to use the theory of 

moments to the problem of control of singularly perturbed systems with a 

variety of optimizable functionals. 

3.1  Statement of the Problem on How to Manage the 

Problem of Moments 

Let the behavior of the controlled system described by the equations 

0

1 2 1 1 0

0

3 4 2 2 0

( ) ( ) ( ) ( ), ( ) ,

( ) ( ) ( ) ( ), ( ) ,

х A t x A t z B t u f t x t x

z A t x A t z B t u f t z t z

    

    
              (3.1.1) 

where ( ) , ( )n mx t R z t R   - vectors of state, ( ) ru t R - control, 

1 2( ) , ( )n mf t R f t R   - constantly operating outside forces; 0 1[ , ]t t t ,  - 

"small" positive parameter  0 1  . 

It is assumed that the system 

0 0 0( ) ( ) ( )x A t x B t u f t                                  (3.1.2) 

where 1 1

0 1 2 4 3 0 1 2 4 2( ) ( ) ( ) ( ) ( ), ( ) ( ) ( ) ( ) ( ),A t A t A t A t A t B t B t A t A t B t        

1

0 1 2 4 2( ) ( ) ( ) ( ) ( )f t f t A t A t f t    

is completely controllable and 

4Re ( ( )) 0A t  .                                             (3.1.3) 

It should be noted that some problems of control chosen value which 

characterizes the costs of resources for the implementation of the process 

control. Usually is required to achieve the desired result so that the value of this 
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quantity was minimal and this value does not exceed certain limits. This value 

is called the criterion of optimality or intensity [86] control and denote it by the 

symbol ( )J u . 

Let any normed space of functions by symbol {}M   and will use it whenever 

the norm of the space of functions is not fixed. The symbol R  we will denote 

the perturbed problem, а 0R - unperturbed problem of optimal control and at the 

same time J

 , 
*

0J   the minimum values of the criterion of optimality in 

problems R

  and 0R  respectively. 

We formulate the following problem R : Let was selected criterion of 

optimality ( )J u  , which can be interpreted as a norm ( )u   functions  

( ) ( , )u t u t   in space { }M u



.
 

It requires among admissible controls [86] to find the optimal control 0 ( ),u t  

which puts the system (3.1.1) from the initial state 0 0

0 0( , ) , ( , )x t x z t z    to 

the final state 
1 1

1 1( , ) , ( , )x t x z t z    and thus having the smallest possible 

form 0( )u  . 

This problem with the 0   responsible task of smaller dimension 0R : 

0
0 ( ) ,min

u M

J u


  

0

0 0 0 0( ) ( ) ( ), ( ) ,x A t x B t u f t x t x     

1

4 3 2 2( )[ ( ) ( ) ( )],z A t A t x B t u f t     

where
1

0 1 2 4 2( ) ( ) ( ) ( ) ( )f t f t A t A t f t   . 
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As shown in Chapter 1, the system (3.1.1) may be replaced system with 

separate movements 

1 1 1 0

0

4 2 2 0

( , ) ( , ) ( , ), ( ) ,

( , ) ( , ) ( , ), ( ) ,

x A t x B t u f t x t x

z A t z B t u f t z t z

  

   

   

   
          (3.1.4) 

where 

1 1 1 2( ) ( , ) ( ) ( ) ( , ),A t A t A t A t H t    4 4 4 2( ) ( , ) ( ) ( , ) ( ),A t A t A t H t A t      

1 1 1 2( ) ( , ) ( ) ( , ) ( , ),B t B t B t N t B t     2 2 2 1( ) ( , ) ( ) ( , ) ( ),B t B t B t H t B t      (3.1.5) 

1 1 1 2( ) ( , ) ( ) ( , ) ( , ),f t f t f t N t f t     2 2 2 2( ) ( , ) ( ) ( , ) ( ),f t f t f t H t f t      

0 0 0 0

0( ) ( , ) ,x x x N t z     0 0 0 0

0( ) ( , ) ,z z z H t x   
0 0,x z - given 

vectors. 

For small values of the parameter  , matrices ( ) ( , ),H t H t   

( ) ( , )N t N t   is having a dimension mnnm  ,  are the solutions of 

singularly perturbed equations (see 1.1) 

1 3 4( ) ( ) ( ) ,H HA t A t A t H     0

0( ) ,H t H                 (3.1.6) 

1 2 4( ) ( ) ( ),N A t N A t NA t      
1

1( ) ,N t N                   (3.1.7) 

and 1

4 3( , ) ( ) ( ),H t A t A t   
1

2 4( , ) ( ) ( ),N t A t A t   at 0  . 

Let ( , , )t s   and ( , , )t s   are normalized at the point 0 1( , [ , ]) t s t s t t  

transition matrices of homogeneous systems 
1( ) ,x A t x  

4 ( ) .z A t z   

We write the law of motion of the system (3.1.4) by the Cauchy formula:

 

0

0

0 1 1( . ) ( , , ) ( , , )[ ( , ) ( , ) ( , )] ,

t

t

x t t t x t s B s u s f s ds                (3.1.8) 
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0

0

0 2 2

1
( . ) ( , , ) ( , , )[ ( , ) ( , ) ( , )] .

t

t

z t t t z t s B s u s f s ds     


       (3.1.9) 

In view of (3.1.5) for the functions (3.1.8), (3.1.9) can be easily checked by 

limiting relations    
0

. ,limx t x t





           1

4 2 2
0

.limz t A t B t u t f t


 



   , 

where  x t  - the vector of state "slow" subsystem (3.1.2). We introduce the 

following notation: 

1 1( , , ) ( , , ) ( , ),h t s t s B s    2 2( , , ) ( , , ) ( , )h t s t s B s   .  (3.1.10) 

Definition. Matrices 1( , , )h t s   and 2 ( , , )h t s  , each line item form r  

dimensional vectors 1 ( , , ),ih t s   2 ( , , )jh t s   will be called the "slow and" fast 

"pulse transition matrices of the system (3.1.4) on the impact of  

( ) ( , ).u t u t   

Comment. In the future, we will assume within the meaning of the impulse 

response matrix [86] that (1) ( , , )h t s  =0, 2 ( , , )h t s  =0 at t s . 

In view of (3.1.10) relations (3.1.8) and (3.1.9) can be written in the form 

 

0 0

10

0 1( , ) ( , ) ( , , ) ( , ) ( , , ) ( , )

t t

t t

x t t t x t s f s ds h t s u s ds             (3.1.11) 

 

0 0

20

0 2

1 1
( , ) ( , ) ( , , ) ( , ) ( , , ) ( , ) .

t t

t t

z t t t z t s f s ds h t s u s ds     
 

        (3.1.12) 

Substituting the boundary conditions 1 1

1 1( , ) , ( , )x t x z t z    in (3.1.10), 

(3.1.12), integral equations 
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1

0

1 1 1( , , ) ( , ) ( ), 1,

t

i i

t

h t s u s ds i n                  (3.1.13) 

1

0

2 1 2( , , ) ( , ) ( ), 1,

t

j j

t

h t s u s ds j m                   (3.1.14) 

where 
1

0

1 [ ] 0 [ ]

1 1 0 1 1( ) ( , , ) ( , , ) ( , ) ,

t

i i

i i i

t

x t t x t s f s ds            

1

0

1 [ ] 1 [ ]

2 1 0 1 2

1
( ) ( , , ) ( , , ) ( , ) ,

t

j j

j j j

t

z t t z t s f s ds      


      

1 1 1 [ ] 1

1( ) ( , ) ,i

i i i jx x x N t z      1 1 1 [ ] 1

1( ) ( , ) ,i

i i i iz z z H t x     

1 1,i jx z - given numbers, [ ]

1 0( , , )i t t  , [ ]

1 0( , , )j t t  , [ ] [ ]

1 1( , ), ( , )i jN t H t    

-  vectors - lines whose components are formed from elements of the rows of 

the respective matrix 
1 0( , , )t t  ,    1 0 1 1( , , ), , , ,t t N t H t   . 

In accordance with the wording of the problem R  vector function  

1 1ih t , ,t  ,  2 jh  1, ,t t   1, ; 1,i n j m 
 
can be considered as 

elements of a space   M h t
, and the vector function  u t

 depicting the 

control as elements of the space   *M u t  adjoint to the   .M h t
 

Then the problem R
 is reduced to the problem of moments [42].  Left side 

of (3.1.13) and (3.1.14) are the linear operation  g h t
    performed on the 

elements 
     1

1 1, ,i ih t h t t    1, ,i n  
     2

2 1, ,j jh t h t t    1, .j m  
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We formulate the problem of moments for the task :R
 

Is required to find the linear operation  g h t
    certain space   ,M h t  

satisfying at predetermined elements 
   1

ih t   1, ,i n
   2

jh t  
 1,j m  

conditions 

   1

1 ,i ig h t   
   1, ;i n                                 (3.1.15) 

   2

2 ,j jg h t   
   1,j m  

and at the same norm  * g , operations  g h t
   , was the lowest of the 

possible. 

Each linear operation that makes sense for functions  h t
, from   M h t

 

is generated by a control  u t
, in integral form [42]. Therefore, interpreting 

the expression on the left side of (3.1.13) and (3.1.14) as a linear function of the 

operation generated    ,u t u t 
 
can be replaced by the problem of 

determining  u t
 problem of moments, i.e. the task of determining the 

operation  g h t
    satisfying (3.1.15). 

Then, in this case, according to the problem of moment [86], we need to find 

from family vector of function of the form 

     1 1 1 1 2 2 1, , , , , ,h t t l h t t l h t t                         (3.1.16) 

function  0

1, ,h t t  , at which the minimum 

   

     

1 2

0 (1) (2)

1 2
,

0 (1) 0 (2) 0 0

1 2

[ ]

[ ]

min
l l

l h t l h t

l h t l h t h t

  

    

 

 
 

  

    

                 (3.1.17) 
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at 
1 1 2 2 1,l l      

where 

           (1) (2)

1 11 12 1 2 21 22 2 1 1 2 1,, , , , , , , , , , , , ,n ml l l l l l l l h t h t t h t h t t        

 [ ]h t  - norm of a function in the space   h t
.
 

Function  0

1, ,h t t   we call the minimum function. 

Minimum function  0

0 1h t t  for the task 0R  is determined from the condition 

     
1

0 0 0 0

0 1 0 0 1 0 0[ ] [ ] [ ]min
l

l h t l h t h t                  (3.1.18) 

at 
1 1 1,l   

where              
1

0

1 0

0 0 1 0 1 0 1 0 1 0 1 0, , , , , ,

t

t

h t h t t t t t x t t x t f d           

   0 0

0 .h t l h t  

3.2  Control with Minimal Power 

Consider the following problem of optimal control: it is required to find a 

control 

0 0 1( , ) ( )u u t u R    

transforming system 

1 2 1 1

3 4 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x A t x A t z B t u f t

z A t x A t z B t u f t





   

   

                  (3.2.1) 

from the initial state 
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0 0

0 0( ) , ( )x t x z t z                                 (3.2.2) 

to the final state 

1 1

1 1( ) , ( )x t x z t z                                    (3.2.3) 

provided that the norm of 

0 1

( , )maxL
t t t

u u t 


 

                                (3.2.4) 

has reached the minimum value. Here 1, , ,n mx R z R u R     - small 

parameter. 

Suppose that for the problem (3.2.1) - (3.2.4) the following conditions: 

01 .  Matrices ( ) ( 1,4), ( 1,2)i jA t i B j   - uniformly bounded and 

uniformly continuous together with its derivatives at 0 1[ , ];t t t  matrix 
4 ( )A t  

nondegenerate, i.e. exist 1

4 ( ).A t  

.20

Vectors 1 2( ), ( ), , ( )nL t L t L t  are linearly independent, at least at one  

0 1( , ),t t t i.e. 
1

( ) 0
n

i i

i

v L t



 at
2

1

0
n

i

i

v


 , where 

1

1 0 1 2 4 2( ) ( ) ( ) ( ) ( ) ( ),L t B t B t A t A t B t    

11
0 1 0 1 2 4 3( ) ( ) , ( ) ( ) ( ) ( ) ( ), 2,3, , ;k

k k

dL
L t A t L A t A t A t A t A t k n

dt


      

03 .  At point 
1t t  

;)}()(,),()(),({ 121

1

4121412 mtBtAtBtAtBrank m            (3.2.5) 

04 .  Roots ( )i t  of characteristic equation of the matrix 
4 ( )A t  subject to 

inequality 
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0 1Re ( ) 0 ( 1, ; [ , ]);i t i m t t t                  (3.2.6)  

In case, when ( ) ( 1,4), ( 1,2)i jA t i B j  - constant matrices, instead of the 

condition 
01 , 

02  we make the following demands: 

05 .  1

0 0 0 0 0{ , , , } ;nrank B A B A B n                                                             (3.2.7) 

.60

 
1

2 4 2 4 2{ , , , } .mrank B A B A B m                                                           (3.2.8) 

When the condition 
01 , 

04 in the system (3.2.1) can make a complete 

separation of movements. After simple transformations (See Chapter 1), we 

obtain: 

1 1 1( , ) ( , ) ( , ),x A t x B t u f t                              (3.2.9)  

4 2 2( , ) ( , ) ( , ),z A t z B t u f t       

0 0

0 0( ) , ( ) ,x t x z t z                                         (3.2.10) 

1 1

1 1( ) , ( ) ,x t x z t z                                          (3.2.11) 

where 
1 1 2 4 4 2( , ) ( ) ( ) ( , ), ( , ) ( ) ( , ) ( ),A t A t A t H t A t A t H t A t         

1 1 2 2 2 1( , ) ( ) ( , ) ( ,), ( , ) ( , ) ( ),B t B t N t B t B t B H t B t         

1 1 2 2 2 1( , ) ( ) ( , ) ( , ), ( , ) ( ) ( , ) ( ),f t f t N t f t f t f t H t f t          

( , ) , ( , ) ,x x H t z z z H t x       

( , ) , ( , ) , 0,1 ;v v v v v v

v vx x H t z z z H t x v        

Matrices ( , )N t   and ( , )H t   are solutions of the equations 

1 2 4 ,N A N A NA                                        (3.2.12) 

1 3 4 .H HA A A H                                       (3.2.13) 
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Matrices elements N, H regular dependent parameters. As shown in Chapter 

1, the matrices N and H of (3.2.12), (3.2.13) are uniquely determined, whereby 

instead of the problem (3.2.1) - (3.2.4) to consider the problem (3.2.9) - (3.2.11), 

(3.2.4). This problem reduces to the problem of moments: to find 

1

0

0

1 1 2 1
,

( , ) ( , , ) ( , ) ( , , ) ,min
t

p q t

B t p B t q d                        (3.2.14) 

on condition 

1 2 1,C p C q                                      (3.2.15) 

where ),,( st  and ' ( , , )t s   0 1( )t t t  - normalized  at the point 

0 1[ , ]s t t  the fundamental matrices of homogeneous systems 

1 4,x A x z A z   respectively; 

1 0 1 0

1 1 0 2 1 0( , , ) , ( , , ) .C x t t x C z t t z               (3.2.15а) 

For the matrix  , ,t s   the condition [42] 

   1, , exp
t s

t s C





  
   

 
 

for all 0 1, [ , ], ,t s t t t s   when 
1, 0 .C const    

If we assume that in some way solved the problem (3.2.14), (3.2.15) and thus 

found vectors 0 0, ,p p q q  then it will be known the minimum function 

0 0 0

1 1 2 1( , ) ( , ) ( , , ) ( , ) ( , , )h t B t t t p B t t t q                       (3.2.16) 

and the number of 0 0.p   

According to the rule the problem of the moment [86], we have to define the 

desired optimal control 0 ( , )u u t   based on the maximum condition 



The Optimal Control Algorithms in Systems with Different Rates of Motion 
 

77 

1 1

0 0

0 0 0( , ) ( , ) ( , ) ( , ) 1max
t t

ut t

h t u t dt h t u t dt                    (3.2.17) 

at 
0 1

0

1
( , )max

t t t

u t



 

  or else when 
0

1
( , )u t








.

 

Maximum integral in (3.2.17) will be achieved if each time t  integrand 

0 ( , ) ( , )h t u t   will be maximum. Thus, optimal control 0 ( , )u t   must be 

determined from the condition [42] 

0 0 0( , ) ( , ) ( , ) ( , )max
u

h t u t h t u t                          (3.2.18) 

at 
0

0 10

1
( , ) ( ).u t t t t



 


                     (3.2.19) 

Since the system (1) non-singular, and hence the function ),(0  th - a 

smooth [86], i.e. it is at a given time interval is zero only in a finite number of 

isolated values .jtt   Then the solution of problem (3.2.18), (3.2.19) delivered 

by the expression 

0 0 0 0

1 1 2 1( , ) ( ( , ) ( , , ) ( , ) ( , , )u t sign B t t t p B t t t q            
.
 (3.2.20) 

0 1( )t t t   

Function ),(0  tu  is defined everywhere except for a finite number of 

isolated values jtt  , where the function standing under the sign of «sing» 

vanishes. 

At 0   from (3.2.9) - (3.2.11) we obtain 

0 0 0( ) ( ) ( ), ( ) , 0;1 ;v

vx A t x B t u f t x t x v           (3.2.21) 
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 1

4 3 2 2( ) ( ) ( ) ( )z A t A t x B t u f t                         (3.2.22) 

where 1 1 1

0 1 2 4 3 0 1 2 4 2 0 1 2 4 2, , ( ) .A A A A A B B A A B f t f A A f         

The resulting system is called a generating system [26]. It should be noted 

that the solution of (3.2.21), (3.2.22), (3.2.4) can not serve as a zero 

approximation of the problem (3.2.9) - (3.2.11), (3.2.4) as the in the vicinity of 

the boundary interval 
0 1[ , ]t t  there may be finite number of isolated points (to 

m  pieces), which must go through the process of switching control action. 

Also in this case, the issue of system switching from one state to another for 

rapid subsystem (3.2.9) remains open. So first of all we need to specify a system 

for which the optimal solution of the problem is well-defined zero 

approximation of the problem (3.2.9) - (3.2.11), (3.2.4). 

Due to requirements regarding ( ) ( 1,4)iA t i   system (3.2.1) (see the 

condition 
01 ) solutions of equations (3.2.12) - (3.2.13) are limited and at 0   

will be performed: 

1 0 4 4 1 0 2 2( , ) ( ), ( , ) ( ), ( , ) ( ), ( , ) ( ),A t A t A t A t B t B t B t B t        

1 0 2 2( , ) ( ), ( , ) ( ).f t f t f t f t    

Consider the system 

0 0 0( ) ( ) ( ), ( ) v

vx A t x B t u f t x t x                     (3.2.23) 

4 1 2 1 2( ) ( ) ( ), ( ) v

vx A t z B t u f t z t z                       (3.2.24) 

where 
1 1

4 1 3 1 4 1 3 1( ) ( ) , ( ) ( ) , 0;1v v vz z A t A t x z z A t A t x v 

       

The system (3.2.23), (3.2.24) approximates the system (3.2.9) - (3.2.11) with 

accuracy of the order of smallness ( )O   and it is obtained from (3.2.9) - 

(3.2.11) in the following approximations: 
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1 1

0 4 3 0 2 4 4 1 4 1( , ) ( ) ( ) ( ), ( , ) ( ) ( ) ( ), ( ) ( ),H t H t A t A t N t N t A t A t A t A t            

2 1 2 1( ) ( ), 0.B t B t      

For the new system the minimum function takes the form 

1
4 1( )

0 0 0 0 0 0

0 0 0 1 2 1( , ) ( , , , ) ( ) ( , ) ( ) ,

t t
A t

h t h t p q B t t t p B t e q 




            (3.2.25) 

where 1( , )t s - the fundamental matrix of the homogeneous system 

0 0

0 ; ,x A x p q  - solutions extremal problem: find 

1

0

0

0 0
,

( , , , )min
t

p q t

h t p q dt                                (3.2.26) 

on condition 

1 2 1C p C q                                     (3.2.27) 

4 1 0 0( )0 1 0 1 1 0 1
1 1 0 2 0( , ) , ( ) , .

A t t t
C x t t x C z e z z O e z

  


 

   


          (3.2.27а) 

Optimal control (3.2.20) for this case is written as 

 4 1( )0 0 0 0

0 0 0 1 2 1

01
0 1 0 0

0

( , ) ( , ) ( , ) ( ) ,

1
, , .

A t
u t sign B t t t p B t e q

t t
t t t

  

 
 

    


   

      (3.2.28) 

Control (3.2.28) transfers the system (3.2.23), (3.2.24) from the initial states 

0 0( , )x z  to the final state 1 1( , )x z  and it is the function of the relay. Minimum 

function 0

0 ( , )h t   (3.2.25) may be zero in the vicinity of 0 1,t t , because it 

contains a function of boundary layer type, whereby the control (3.2.28) has a 

complete set of switching points, which is not always possible for the 

generating system (3.2.21), (3.2.22). Rewrite the equality (3.2.27) in the form of 
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(1) (2)

1

1 1

1
n m

i k

i k

C p C qk
 

   .                           (3.2.29) 

We now show one of the approximate methods of determining the optimal 

parameters 0 0, ( 1, ; 1, ). i kp q i n k m  

Assuming that the vector 
1C  

(3.2.27) satisfies (1) 0,nC   from (3.2.29), we 

obtain 

1
(1) (2)

2(1)
1 1

1
(1 ).

n m

n i i k

i kn

p C p C q
C




 

                     (3.2.30) 

The following functions 0 0( , ) ( , , , )h t h t p q   standing under the sign of the 

module in (3.2.26) can be represented as 

0 1 1 1

1

( ) ( , ) ( , ) ( , ) ,
n

i i

i

B t t t p K t t p K t t p


                  (3.2.31) 

0 1 1 1

1

( ) ( , ) ( , ) ( , ) ,
n

i i

i

B t t t p K t t p K t t p


                  (3.2.32) 

where 1( )
t t





- function of the type of the boundary layer, in other words, for 

it has the estimate 1exp , , 0
t t

C C const  


  
    

  
. 

In view of (3.2.30) - (3.2.32) function 0 ( , )h t   is written in the form  

0 0

1 1 11
1 1 2(1) (1) (1)

( , ) ( , , , )

( , ) ( , ) ( , )
( , ) ( ) ,n n n

n n n

h t h t p q

K t t K t t K t tt t
K t t C p C q

C C C

 

 




   
          

   

 (3.2.33) 

1 2 1 1 2 1( , , , ), ( , , , ),n nK K K K p p p p 
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where 
(1) (1) (1)

1 2 1 1 2 1( , , , ), ( , , , ),m nC C C C    
    

(1) (2) (2)

2 1 2 1 2( , , , ), ( , , , ).m mC C C C q q q q    

In this case, the problem (3.2.26), (3.2.27) the relative minimum is reduced to 

the problem of the absolute minimum of the function 

1

0

0 0( , , ) ( , , , ) .

t

t

p q h t p q dt                            (3.2.34) 

Note that for the functions 0 0( , , , ), ( , , )h t p q p q    at 0 
 
holds the 

following limit relations: 

0 0 0 0
0 0

lim ( , , , ) ( , ), lim ( , , , ) ( ),h t p q h t p t p q p
 

   
 

       (3.2.35) 

where 
1

0

1 1
0 1 1 0 0(1) (1)

( , ) ( , )
( , ) ( , ) , ( ) ( , ) .

t

n n

n n t

K t t K t t
h t p K t t C p p h t p dt

C C


 
     

 
  

Numbers 0 0( 1, 1), ( 1, )i i k kp p i n q q k m    
 
determining the 

minimum function 0 0 0

0 ( , , , )h t p q   will satisfy the system of equations 

1

0

1

0

0 1
1 1 0(1)

(2)0 11
0(1)

( , )
( , ) ( , , , ) 0, 1, 1,

( , )
( , , , ) 0, 1, .

t

n
i

i nt

t

n
i k

k nt

K t t
K t t C signh t p q dt i n

p C

K t tt t
C signh t p q dt k m

q C




 
 



 
    

  

   
    

   





 (3.2.36) 

As stated in [86] for the solution of this problem on the conditional minimum 

is considered the differential equations for the unknown parameters 

( 1, 1)kl k M   (in this case, relatively ,i kp q ) 

1 2 1( , , )
, 1, 1i M

i

dl l l l
i M

dv l


 

   


                    (3.2.37) 
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where 0  - coefficient of proportionality determining the "shutter" speed. In 

drawing up the differential equation (3.2.37) introduced a new parameter v , 

which is interpreted as the time counted at the point of the movement { }il l  

along "the descent of the curve" by some arbitrary point { }il l  on the 

hyperplane 
1

1
M

i i

l

C l


  to the desired point 0 0{ }il l , numerical integration by 

using the recurrence relation 

( )

( 1 ( ) 1 2 1( , , )
[ ] .j

j j M
i i l l

i

l l l
l l v

l


 




  


                (3.2.38) 

From the second equation (3.2.36), we note that arbitrary ( 1, )
k

k m
q





 

defined functions faster components 0 ( , , , )h t p q  . 

Then, in this case, will consider the following singularly perturbed 

differential equations respectively to  , 1, 1; 1,i kp q i n k m    

0 0, ,i k

i k

dp dq

dv p dv q

 
  
 

   
 

                    (3.2.39) 

where the partial derivatives 0 0,
i kp q

  

 
 are defined by (3.2.36). For the 

numerical integration of the equation (3.2.39) can propose the following process 

of successive approximations. At 0   from (3.2.39) we obtain the reduced 

system 

 
 0

, 1, 1 .i

i

pdp
i n

dv p





   


                  (3.2.40) 
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Equation (3.2.40) can be integrated numerically using the relation (3.2.38), 

identifying all  0 1, 1i ip p i n    and leaving them in the equation 

 0

0 ,
, 1,k

k

p qdq
k m

dv q


 


  


                  (3.2.41) 

and making the substitution 1t t





  the right side of (3.2.41), we obtain: 

 
   

   
0

0 20

01
, , ,k n k

k

n

dq b C
signh d

dv C

       
 

   
  
            (3.2.42) 

where 

       

 
 

 
 

 
   

   

 



























m

k

k

k

kn

kn

n

i

n

i

n

n

i

i q
C

Cb
b

C
pb

C

C
b

qpthqpthqpthh

1
1

20

1

1

0
1

1

0

1

1

0

10

0

10

0

10

,,
1

...,~,,~,,,~,,
~





    (3.2.43) 

where    0 0 0 0 0

1 2 1, ,..., , 1,n ip p p p b i n  - vector components  0 0 1 .B B t . 

Now, again using the relations (3.2.44) can be integrated into the  

equation (3.2.42). 

After the necessary calculations will be known  0 1,kq k m . Number 0

0  

calculated using the formula (3.2.34). Number 0

0 0

0

1



  characterizes the 

amplitude of the control action. 

Suppose now that for sufficiently small  00     and the boundary 

points    0 0 1 1, , ,x z x z  following conditions are met: 

a) the angles of intersection of the graph of (3.2.25) 
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            1
4 1 1 /0 0 0 0 0 0

0 0 0 0 1 2 1, , , , ,
A t t t

h t h t p q B t Ф t t p B t e q


 
       (3.2.44) 

to t axis nonzero; 

b) Jacobian 

 

0 0,

,

p q

p q

   
 

  



 at 0 0,p p q q   nonzero. 

When the above conditions function    0 0, , , ,h t h t p q   vanishes only 

for a finite number of isolated points in time    , , 1, ,jt t p q j s   are 

defined as a function of the magnitude unambiguous 

 , , 1, ; 1,i kp q i n k m   and the partial derivatives ,
j j

i k

t t

p q

 

 
 at 

 0 0, 1, ; 1, ,i i k kp p q q i n k m     exist as it follows from the implicit 

function theorem. 

Even under this condition from the same implicit function theorem implies 

that  0 1,ip i n  are continuously differentiable functions on 
   1

1, ,iC i n  and 

 0 1,kq k m  are continuously differentiable functions on 

       1 2
1, , 1, .i kC i n C k m   Then for small changes 

   1 2
,i kC C   will 

be small changes in variables 0 0, ,i kp q  where are the estimates: 

0

1 1ip r c                                           (3.2.45) 

 0

2 1 2kq r c c                                  (3.2.46) 

 0

0 3 1 2r c c                                 (3.2.47) 

where ir - positive numbers. 
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Changing the minimum function  0

0 ,h t   depends not only on changes in the 

values ,o

ip 0

kq , and members of unregistered matrix decomposition 
1( , )t t   

and 
1( , )t t  . Imagine matrices ( , , )t s  , ( , , )t s   in the shape of: 

( , , ) ( , ) ( , , )t s t s t s                                    (3.2.48) 

4 ( )( )/( , , ) ( , , )
A t t st s e t s    

.
                            (3.2.49) 

It is easy to show that for sufficiently small values 0   functions   and 

  satisfy the inequalities 

2 ( )

2( , , ) ( 1)t s m t st s d C e e                             (3.2.50) 

1

( )

( )( , , ) ( 1)

t s

d C t st s C e e



 




                         (3.2.51) 

where 
1 21, , ,m d d C const, 0< 0 0,   min 

2 1

1
,

d C d C

 
 
 

. 

Then, for any vectors p  and q  hyperplane of (3.2.27), in particular in 

0 0,p p q q   function 0 1( , , , ) ( )h t p q t t t     can be represented as 

0 0 0, 0

0( , , , ) ( , , ) ( ),h t p q h t p q O e                     (3.2.52) 

where 1 0, 0
t t

 



    const. 

This means that the function 0 0( , , , )h t p q   has as many zeros as had 

0 0

0 ( , , , ).h t p q   These zeros are placed with precision ( )O e   (the distance 

from the boundary point 
1t t  with precision  O  ), near the respective zeros 
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0 0

0 ( , , , ).h t p q 
 
In view of (3.2.48) and (3.2.49) from (3.2.15a), (3.2.27a), we 

obtain 

1 0

1 1 1 0

0 0

0 1 0 0 1 0 0

( ( , ) ( , , )

( , ) ( , ) ( , , ) ( , ) ,

C N t z t t x

t t N t z t t N t z

   

   

  

 
          (3.2.53) 

04 1( ) 0 0

2 1 0 1 1 1 0

1

1 1

( ( , ) ( , ) ) ( , , )

( , ) ,

A t
C e H t x H t x t t z

H t x

    

 

     

 
   (3.2.54) 

where 
1( , )H t   - limited function, which appears from the relation: 

1 0
4 3 1 0( , ) ( ) ( ) ( , ), 0.

t h
H t A t A t H t   



 
      

Considering that the matrices ,N H  limited and functions ,  satisfy 

(3.2.50), (3.2.51), from (3.2.45) - (3.2.47), we obtain: 

0

1 ,ip m    0

2 ,kq m    0

0 3 ,m    1 2 3, , , 0m m m    const.   (3.2.55) 

These estimates suggest that for all t , except for a set Q  values t , a measure 

which satisfy the inequality 

4( )Q m  .                                  (3.2.56) 

Control 0

0 ( , )u t   differs from the optimal control 0 ( , )u t   the original 

problem with the accuracy ( )O  , i.e. will be performed the following 

inequality: 

0 0 0

0 0 5 ,u u u m      4 5,m m  const.                (3.2.57) 

Hence we have the following conclusion: 
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Theorem 3.2.1. If the conditions a), b), then for sufficiently small values 

     

0 0

2 1

1
min ,

d C d C


  

  
    

  
 

1) optimal control ( , )u t   (3.2.20) can be approximated by a control 

0

0 ( , )u t   (3.2.28) with precision ( )O  ; 

2) at 0   both control -
0

, 0u u  one tends to the same limit, i.e. 

0 *

0
0 0

lim ( , ) lim ( , ) ( ).u t u t u t
 

 
 

   

This item is the optimal solution for the problem of the generating system 

(3.2.21), the order of which is lower than (3.2.1). All these statements are true 

for all t , except for a set Q  values, a measure which is of the order of 

smallness ( )O  . 

In conclusion, it should be noted that the above method is easily offended by 

vector control case. 
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