
Chapter 4

Prime Numbers and Irrational
Numbers

Abstract
The question of the existence of prime numbers in intervals is treated using the
approximation of cardinal of the primes π(x) given by Lagrange.
Legendre’s theory to find explicitly the roots of quadratic algebraic polynomials is related
to the search of the unit ring of the groups Fp, we present the method with applications and
its generalization to higher degrees.





Chapter 4 Prime Numbers and Irrational Numbers

4.1 Cardinal of the Primes in Intervals

Let π(n) be the cardinal of the set of the prime numbers lower than a prime integer n
and let u(n) be the function defined on P as the sum of the inverse of the prime numbers
lower than n

u(n) =
∑

k∈P,k≤n

1

k
. (4.1)

Legendre (1830) have proposed an approximation of the function π(n) from the
variations of the function u(n), as n is large

π(n) =
n

log n−A
{1 + o(1)} (4.2)

with a constantA = 1.08366. His numerical comparaison to the existing tables prove that
the relative approximation error of π(n) is decreasing and smaller than 10−4 for n larger
than 5. 104. Chebyshev’s approximation

π(n) ∼ Li(x) =

∫ n

2

dx

log x

has always a much larger error, its bounds

.89Li(x) ≤ π(n) ≤ 1.11Li(x)

are not sharp and the true value of π(n) is closer than the lower bound than to Li(x).

Bounds for an approximation of π(n) by n(log n)−1 are unprecise, from (4.2)

π(n) ∼ n(log n)−1
∑
k≥0

Ak(log n)−k

as n tends to infinity so there exists a constant a such that

n

log n
< π(n) <

an

log n
.

According to Bertrand’s postulate (1845), for every n of N∗ there exists a prime number
p such that

n < p ≤ 2n.
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He proved this inequality on the interval [2, 4001]. In this section, it is extended to
infinity using Legendre’s approximation (4.2) and other open questions on the existence
of primes in smaller intervals at infinity are proved.

Theorem 4.1.1 For all n and k of N∗, the number of primes in the interval ]kn, (k+1)n]

has the order π(n) and

π(n+m)− π(m) ≤ π(n)

as m and n tend to infinity.

Proof. As n tends to infinity, the cardinal of the prime numbers between kn and (k+1)n

has the order π(k + 1)n)− π(kn) and it is approximated by

πk(n) =
(k + 1)n

log n+ log(k + 1)
− kn

log n+ log k

+A
[ (k + 1)n

{log n+ log(k + 1)}2
− kn

(log n+ log k)2

]
{1 + o(1)}

=
n

log n
− o
( n

log2 n

)
where the second term is neglectable with respect to the first one. The last equality proves
that πk(n) ≤ π(n) as m and n tend to infinity. �

The inequality π(n+m)− π(m) ≤ π(n) is known as Hardy-Littlewood conjecture and
it was not proved for large numbers.

Legendre conjectured the existence of a prime number in the intervals

]n2, (n+ 1)2].

It can checked for small values of n such as ]4, 9], ]9, 16], ]16, 25], ]25, 36], ]36, 49],
etc. but it was not proved for large n and Legendre’s approximation of π(n) enables to
approximate the order of the cardinal of P in such intervals.

Theorem 4.1.2 For all n and k ≥ 2 of N∗, the number of primes in the interval ]nk, (n+

1)k] has the order

πk(n) =
nk−1

log n

as n tends to infinity.
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Proof. As n tends to infinity, the number of primes in the interval has the order π(n+

1)k)− π(nk) which is expanded as

πk(n) =
(n+ 1)k

k log(n+ 1)
− nk

k log n

+A
{ (n+ 1)k

k2 log2(n+ 1)
− nk

k2 log2 n

}
{1 + o(1)}

=
nk

k log n

{(
1 +

1

n

)k log n

log n+ log
(

1 + 1
n

) − 1
}

+O
( nk

log2 n

)

=
nk−1

log n
+O

( nk−1

log2 n

)
so it tend vers infinity avec n. �

Proposition 4.1.3 There exist infinitely many intervals ]nk, (n + 1)k] that contain

Mersenne numbers Mm = 2m − 1.

Proof. Let m, k and n be integers such that nk ≤Mm ≤ (n+ 1)k then

k log n

log 2
< m <

k log(n+ 2)

log 2
(4.3)

since 2m ≤ (n+ 1)k + 1 ≤ (n+ 2)k for all n and k in N. There exists k0 in N such that
for every k ≥ k0, there exist integers m and n satisfying (4.3). Since there are infinitely
many intervals ]nk, (n+ 1)k], there exist infinitely many m satisfying (4.3). �

Proposition 4.1.4 There are infinitely many intervals ]nk, (n+ 1)k] that contain Fermat

numbers Fp = 22p − 1.

Proof. Let p, k and n be integers such that nk ≤ Fp ≤ (n+ 1)k and for m = 2p

k log(n− 1)

log 2
< m <

k log(n+ 1)

log 2
. (4.4)

Furthermore, there exists k0 such that for all k ≥ k0, there exist n and p such that 2p

belongs to the interval defined by (4.4). �

Let (xn)n≥1 be an integer sequence tending to infinity with n, Another problem is to
determine the order of the smallest integer an such that the intervals ]xn, xn+an], n ≥ 2,
do not contain prime number.
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Theorem 4.1.5 Let an = o(xn), n tends to infinity the cardinal of the prime numbers in

the interval ]xn, xn + an] has the order

π(xn, an) =
an

log xn
.

Proof. As n tends to infinity, thee cardinal of the prime numbers between xn and
xn + an has the expansion

π(xn, an) =
xn + an

log(xn + an)
− xn

log xn

+A
{ xn + an

log2(xn + an)2
− xn

log2 xn

}
{1 + o(1)}

=
xn

log xn

{(
1 +

an
xn

) log xn

log xn + log
(

1 + an
xn

) − 1
}

+
Axn

log2 xn

[(
1 +

an
xn

) log xn{
log xn + log

(
1 + an

xn

)}2 − 1
]

=
an

log xn

{
1 +

A− 1

log xn
(1 + o(1))

}
its limit as n tends to infinity is deduced. �

At infinity, an interval ]xn, xn + an] defined by an = x
1
2
n or an = log2 xn contains

prime numbers but an interval with length an = log xn is generally not large enough
for small values of n though primes may occur for large xn, for example in the interval
]4001, 4008], with xn = n. If an = o(log xn), π(n) tend to zero as n tends to infinity
and there are no primes in the interval ]xn, xn + an].

Legendre stated several results about the multiples of prime number in an arithmetic
series. Let A and C be relatively primes, for all n in N∗ and θ ≤ n in P such that θ - A,
there exists α in N∗ such that in the sequence of n terms

A− C, 2A− C, 3A− C, . . . , nA− C, (4.5)

θ | Aα− C, then

Aα− C,A(α+ θ)− C,A(α+ 2θ)− C, . . .

is an integer sequence of multiples of θ. With two primes θ and λ > 2 that do not divide
A, there exist only two consecutive multiples of θ and, respectively, λ. With three primes
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3, θ, λ, there exist four consecutive multiples of 3, θ, λ, 3. With five primes 3, 5, θ, λ, µ,
there exist a maximum of M = 6 consecutive multiples of 5, 3, θ, µ, 3, 5. More generally,
with a sequence of k primes including two unknown numbers, the maximum number of
consecutive multiples of the k primes is

M = π(k−1) − 1

where π(k−1) is the (k − 1)th term of the sequence of the odd prime integers.

Theorem 4.1.6 (Legendre) Let θ1, . . . , θk be k prime numbers. In every sequence of

π(k−1) consecutive terms of (4.5), there exists at least one prime number which is not

divided by θ1, . . . , θk.

As a consequence, every arithmetic series having a first term and a progression relatively
prime, contains infinitely many prime numbers.

4.2 Legendre’s Quadratic Equations

The equation
p2 −Aq2 = ±k, (4.6)

with an integer k, has been explicitly solved using an expansion of
√
A in a series of

fractions. Let a be the larger integer such that a2 ≤ A and let A = a2 + b with b < a2

√
A = a+

1

x(1)
,

x(1) =
1√
A− a

=

√
A+ a

b
= a(1) +

1

x(2)
,

where a(1) is the larger integer before x(1), x(1) > 0 and x(2) > 0 satisfies

x(2) =
b√

A+ a− a(1)b
=

√
A− (a− a(1)b

1 + 2aa(1) − a(1)2b

= a(2) +
1

x(3)
,

where a(2) is the larger integer before x(2) and x(3) > 0. Continuing this expansion, for
every k > 1, there exist M > 0 and D > 0, a(k), the larger integer before x(k), and
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x(k+1) > 0 such that

x(k) =

√
A+M

D
= a(k) +

1

x(k+1)
,

x(k+1) =
D√

A+M −Da(k)
=

√
A+M ′

D′
,

M ′ = Da(k) −M,

D′ =
(
√
A+M)(

√
A+M ′)

D
− a(k)(

√
A+M ′).

The continued fraction

√
A = a+

1

a(1) +
1

a(2) +
1

a(3) + . . .

(4.7)

where all a(k) are integers, converges to
√
A.

The properties of the continued fractions enable to solve quadratic integer equations.
Let us consider a continued fraction x defined by (4.7) with integers a(k), its first terms
are

a,
aa(1) + 1

a(1)
,
aa(1)a(2) + a+ a(2)

a(1)a(2) + 1
.

A classical representation of the ith convergent of a continued fractions is the equality of
its numerator pi and the determinant of the matrix

a0 1 0 · · · 0

−1 a1 1 0 · · · 0

0 −1 a2 1 0 · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 −1 ai−2 1 0

0 · · · 0 −1 ai−1 1

0 · · · 0 −1 ai


and its denominator is similar to the numerator pi−1 calculated for (a1, . . . , ai−1).

Let p0q0−1 and pq−1 be two consecutive fractions of (4.7) with arbitrary orders k and
k + 1, the k + 2th fraction is deduced from the previous equation as

p′

q′
=
pµ+ p0

qµ+ q0
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where p′ > q′ so they are defined by

p′ = pµ+ p0,

q′ = qµ+ q0. (4.8)

Theorem 4.2.1 The consecutive finite fractions p0q0−1 and pq−1 of (4.7) satisfy

pq0 − p0q = ±1

with the value 1 if pq−1 has an even order, and −1 if pq−1 has an odd order.

Proof. Considering 4 consecutive fractions p0q0−1, pq−1, p′q′−1 and p′′q′′−1

pq′ − p′q = −(pq0 − p0q) = −(p′q′′ − p′′q′)

furthermore, the first fractions are a and (aa(1) + 1)/a(1) for which pq0 − p0q = 1 and
the result follows. �

By construction, the finite continued fractions of x in (4.7) are alternatively larger and
smaller than x, with a(k) > 0 and x(k) > 0. The even fractions are larger than x and the
odd fractions are smaller. By induction, for a continued fraction with ith term piq

−1
i and

initial term a0, we have

piqi−1 − pi−1qi = ±(−1)i,

piqi−2 − pi−2qi = ±(−1)iai,

piqi−3 − pi−3qi = ±(−1)i(aiai−1 + 1),

piqi−4 − pi−4qi = ±(−1)i(aiai−1ai−2 + ai + ai−2), etc.

Corollary 4.2.2 For every non square integer d, there exists a sequence (pnq
−1
n )n≥0

converging to
√
d and such that ∣∣∣∣√d− pn

qn

∣∣∣∣ ≤ 1

q2
n

.

Proof. From Theorem 4.2.1∣∣∣∣pq − p0

q0

∣∣∣∣ =
|pq0 − p0q|

q0q
=

1

q0q
.

Science Publishing Group 93



Number Theory and Algebraic Equations

�

Choosing the mean of two consecutive terms of the continued fraction gives a better
approximation of

√
d, for n large enough.

Example. The integer part of
√

31 is 25 and the square root of 31 is the continued fraction

√
31 = 5 +

1

x
,

x =
1√

31− 5
=

√
31 + 5

6
= 1 +

√
31− 1

6
,

x(1) =

√
31 + 1

5
= 1 +

√
31− 4

5
,

x(2) =

√
31 + 4

3
= 3 +

√
31− 5

3
,

x(3) =

√
31 + 5

2
= 5 +

√
31− 5

2
,

x(4) =

√
31 + 5

3
= 3 +

√
31− 4

3
,

x(5) =

√
31 + 4

5
= 1 +

√
31− 1

5
,

x(6) =

√
31 + 1

6
= 1 +

√
31− 5

6
,

x(7) = 5 +
√

31.

The cycle of fractions restarts infinitely many often at x(7) = 10 + x−1 = 2a + x−1,
using

√
31 = 5 + x−1. The first integer of the period is α = 1 due to x and the last one is

2a. The integers of a cycle are 1, 1, 3, 5, 3, 1, 1, 10, the sequence of the first seven terms
is symmetric with respect to 5 and the denominator 1 of x(7) leads to replace a = 5 by 2a

at the end of the cycle. The partial quotients after a are

1,
1

2
,

4

5
,

21

37
,

51

118
,

88

155
,

155

273
, etc.,

they have alternative orders

1

2
<

4

7
,

4

7
>

21

37
, etc.

One can prove the same properties for every irrational number with a cycle a(i), a(i+1),
. . ., a(i+s) and the partial fractions have alternating orders.
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Proposition 4.2.3 (Legendre) In the expansion of
√
A as a cyclic continued fraction, the

cycle a(i), a(i+1), . . . , a(j) is symmetric.

Proof. Let pq−1 be a finite fraction with integer part µ in the expansion of
√
A, there

exists z = x(j) corresponding to the end of the period such that

x−1 = z − µ =
√
A− a.

Let p0q0−1 be the finite fraction preceeding pq−1, then

√
A =

pz + p0

qz + q0
=
p
√
A+ p(µ− a) + p0

q
√
A+ q(µ− a) + q0

,

Aq = p(µ− a) + p0,

p = q(µ− a) + q0

from the last equation, pq−1 = (µ− a) + q0q−1 where µ− a is the integer part of pq−1,
it follows that µ = 2a. Moreover q0 = p− aq therefore the integer part of p0q0−1 is a, it
is symmetric to the first term.

Let D0−1(A0 + I0), D−1(A + I) and D′−1(A′ + I ′) be the consecutive quotients in
the continued fraction of

√
A, I = aD0 − I0 and I ′ = µD − I , A − I2 = D0D and

A′ − I ′2 = DD′, it follows that

D′ = D0 + µ(I − I ′).

The reverse equations are similar, I0 = aD0− I and D0 = D′+µ(I − I ′) which proves
the symmetry of the series of integer parts in the continued fraction of

√
A. �

Example. The continued fraction of
√

271 begins with a = 16 and it has the symmetric
cycle

2, 6, 10, 1, 4, 1, 1, 2, 1, 2, 1, 15, 1, 2, 1, 2, 1, 1, 4, 1, 10, 6, 2, 32.

The integer solutions of (p, q) of Pell’s equation (4.6), with constants A integer such
that
√
A is irrational and k in Z, can be found in the series of the partial continued fractions

pq−1 of
√
A, if the equation has solutions.

Example. The first term in the continued fraction of
√

31 is pq−1 determined by (p, q) =

(11, 2) such that p2 − 31q2 = −3.
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Theorem 4.2.4 If
√
A has a cyclic continued fraction, the equation p2 − Aq2 = ±1 has

infinitely many solutions (p, q) and p2 −Aq2 = 1 if and only if p−
√
Aq > 0.

It is not proved that the equations p2−Aq2 = k have solutions for all A and k. For every
partial continued fraction pq−1 of

√
A irrational, there exists a constant k such that (p, q)

is solution of an equation (4.6) with the constant k in Z. The values of k are small due to
the oscillations of the consecutive values of pq−1 (Theorem 4.2.1).

The following cases present solutions of (4.6) where A is not a square number. The
square root of A is defined by a and the series (a

(j)
j=1,...,J). The continued fractions of√

A are defined as follows

√
2 has the series 1, 2, 2, 2, . . .,

√
3 has the cycle (1, 2) with a = 1,

√
5 has the series 2, 4, 4, 4, . . .,

√
6 has the cycle (2, 4) with a = 2,

√
7 has the series (1, 1, 1, 2) with a = 2,

√
11 has the cycle (3, 6),

√
13 has the series (1, 1, 2) with a = 3,

√
15 has the cycle (1, 6) with a = 3,

√
17 has the series 4, 8, 8, 8, . . .,

√
19 has the cycle (2, 1, 3, 1, 2, 8) with a = 4,

√
21 has the cycle (1, 1, 2, 1, 1, 8) with a = 4,

√
23 has the cycle (1, 3, 1, 8) with a = 4,

√
27 has the cycle (5, 10) with a = 5,

√
29 has the cycle (2, 1, 1, 2, 10) with a = 5.
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The length of the cycles is s = 1 for the series defining
√

2,
√

5,
√

17, for these
numbers

√
A = a + x−1 where x satisfies (x − k)2 = k2 + 1 for an integer k. The

symmetry of the continued fractions is not specific to the integers, the fraction of the
transcendental number π is cyclic with a = 1 and the cycle (1, 1, 2). The partial quotients
up to (a

(j)
j=1,...,J) of

√
A are solutions of equations p2−Aq2 = k with varying k, they are

given in the following tables for A = 1 (mod 4), A = 3 (mod 4) and A = 7 (mod 8).
The group of the units of Q(

√
2) is {(1 +

√
2)n, n ≥ 1}.

Proposition 4.2.5 (Legendre) Let A = 1 (mod 4) such that
√
A is irrational and let

(p, q) be the smallest solution of the equation p2 −Aq2 = 1 with q > 1, then there exists

a solution (g, h) of p2 −Aq2 = −1 and such that (g, h) is smaller than (p, q).

Its proof relies on a factorization of q and on the fact that p and q do not have the same
parity. It applies to A = 5 and A = 17, then Z[

√
5] and Z[

√
17] have infinitely many

roots of the unit and their smallest roots with q larger than 1 are respectively

w5 = 9 + 4
√

5,

w17 = 33 + 8
√

17,

and the roots of the unit for A = 5 are 2 +
√

5, (2 +
√

5)2, (2 +
√

5)3, (2 +
√

5)4. The
fields Z[

√
13] and Z[

√
29] have infinitely many roots of the unit wn where

w13 = 29 + 8
√

13,

w29 = 70 + 13
√

29.

For these numbers, Pell’s equations with k = 1 has the solutions (p, q) = (649, 180) for
A = 13 and (p, q) = (9801, 1820) for A = 29.

Proposition 4.2.6 (Legendre) Let A = 3 (mod 4) be prime and let (p, q) be the

smallest solution of the equation p2 −Aq2 = 1 with q > 1, then

1. ifA = 3 (mod 8), the equation x2−Ay2 = −2 has a solution smaller than (p, q),

2. if A = 7 (mod 8), the equation x2 −Ay2 = 2 has a solution smaller than (p, q).

Science Publishing Group 97



Number Theory and Algebraic Equations

Table 4.1: Solutions of equations (4.6) with A = 1 (mod 4)

A

(p, q) 5 (2, 1) (9, 4) (38, 17) (161, 72) (682, 305)

k −1 1 −1 1 −1

(p, q) 13 (4, 1) (7, 2) (11, 3) (18, 5) (44, 13)

k 3 −3 4 −1 9

(p, q) 17 (4, 1) (33, 8) (268, 65)

k −1 1 −1

(p, q) 21 (5, 1) (9, 2) (23, 5) (32, 7)

k 4 −3 4 −5

(p, q) 29 (5, 1) (11, 2) (27, 5) (70, 13) (727, 135)

k −4 5 4 −1 4

Examples are presented in Table (4.2) for the first case with A = 3, 11, 27 and in Table
(4.3) for the second case with A = 7 and 23, the proposition does not apply to A = 15

which is not prime.

The groups of units of Z[
√

3], Z[
√

11], Z[
√

19] and Z[
√

27] have infinitely many
elements and their smallest units larger than 1 are respectively

w3 = 2 +
√

3,

w11 = 10 + 3
√

11,

w19 = 170 + 39
√

19,

w27 = 26 + 5
√

27.

Theorem 4.2.7 (Legendre) If the equation

p2 −Aq2 = −1 (4.9)

has solutions, then A is a sum of two squares.

Equation (4.9) cannot be satisfied ifA = 3 (mod 4) which cannot be sum of two squares,
it requires A = 1 (mod 4).
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Table 4.2: Solutions of equations (4.6) with A = 3 (mod 8)

A

(p, q) 3 (1, 1) (2, 1) (5, 3) (7, 4) (19, 11)

k −2 1 −2 1 −2

(p, q) 11 (3, 1) (10, 3) (63, 19) (199, 60)

k −2 1 −2 1

(p, q) 19 (4, 1) (9, 2) (13, 3) (48, 11) (61, 14)

k −3 5 −2 5 −3

(p, q) 27 (5, 1) (26, 5) (265, 51) (1351, 260)

k −2 1 −2 1

Table 4.3: Solutions of equations (4.6) with A = 7 (mod 8)

A

(p, q) 7 (3, 1) (5, 2) (8, 3) (13, 5) (21, 8)

k 2 −3 1 −6 −7

(p, q) 15 (4, 1) (27, 7) (31, 8) (213, 55)

k 1 6 1 −6

(p, q) 23 (5, 1) (19, 4) (24, 5) (211, 44)

k 2 −7 1 −7

(p, q) 31 (6, 1) (11, 2) (39, 7) (206, 37) (1520, 273)

k 5 −3 2 −3 1

Necessary conditions for (4.9) with A = 1 (mod 4) are q odd and p even since q even
would imply x2 = −1 (mod 4) and this is impossible. Let A = 1 (mod 4), with q = 1,
the equation is equivalent to A = p2 + 1. Otherwise, let

√
A+ I0

D0
,

√
A+ I

D

be the continued fractions with integer parts µ at the middle of the cycle, then D0 = D

and A = D2 + I2. For example 29 = 52 + 22.

Kaplan and Williams (1986) noted that the equation (4.9) has solutions if and only if
the continued fraction of

√
A has a cycle with an odd length. Moreover if A has a prime

factor equal to −1 (mod 4), this equation and the equation p2 − Aq2 = −4 have no
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solutions. If the equation p2 −Aq2 = −4 has solutions, either A = 5 (mod 8) or A = 0

(mod 4) and p2 −Aq2 = −4 is equivalent to p even and to the equation x2 − aq2 = −1

for 2x = p and 4a = A, then the length of the cycle of
√

m
4 is odd.

For A 6= 1 (mod 4) such that
√
A has a continued fraction with a cycle of length

s > 1, Pell’s equation has a solution (p, q) such that pq−1 is the partial continued fraction
of order s− 1 after the integer part of

√
A.

According to Dedekind’s proof of the existence of a non trivial solution of Pell’s
equation for every A, such solutions would be deduced from solutions (x, y) and (x′, y′)

of an equation x2 − Ay2 = k having several solutions, this equation is supposed to
imply the equalities xx′ −Ayy′ = x2 −Ay2 = 0 (mod k) and xy′ − yx′ = 0 (mod k)

which entail

ξ2 −A− η2 = 1,

(x−
√
Ay)(x′ +

√
Ay′) = k(ξ + η

√
A),

(x+
√
Ay)(x′ −

√
Ay′) = k(ξ − η

√
A).

Numbers 19 and 21 proves that this argument fails, the equation x2 − 21y2 = 4 has
several solutions (5, 1), (23, 5) and (110, 24). With the values (x, y) = (5, 1) and
(x′, y′) = (23, 5), we have xx′ −Ayy′ = 2 (mod k) and xy′ − yx′ = 2 (mod k) then

(x−
√
Ay)(x′ +

√
Ay′) = 2(1 +

√
A)) + 4(ξ + η

√
A),

(x+
√
Ay)(x′ −

√
Ay′) = 2(1−

√
A)) + 4(ξ − η

√
A),

(x2 − 21y2)(x′2 − 21y′2) = 4(1−A) + 16(ξ2 −Aη2) + 16(ξ −
√
Aη),

(ξ2 −Aη2) + (ξ −
√
Aη) = 6

and η = 0. Therefore the existence of several solutions of an equation with k 6= 1 does
not imply the existence of a solution for k = 1. The third solution of x2 − 21y2 = 4 is
x′′ = 110, y′′ = 24, this implies (55, 12) is solution of x2 − 21y2 = 1. For A = 19,
the equations x2 − 19y2 = k with k = −3 and 5 have several solutions and they do not
provide solutions for the equation with k = 1.

If A is not prime, the equations can be simplified if A, k and p have a least common
factor larger than 1. For A = 15 and with the solution (p, q) = (27, 7), the equation
p2 − 15q2 = 6 is identical to 3m2 − 5n2 = 2, with m = 7. For A = 21 and with
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(p, q) = (9, 2), the equation p2 − 21q2 = −3 is identical to 3m2 − 7q2 = −1, with
m = 3.

Proposition 4.2.8 Let A = NC be square-free and let k be such that C | k, the equation

p2 −Aq2 = k has solutions such that C | p if and only if the equation

Mm2 −Nn2 = k′

has solutions, where CM = m and Ck′ = k.

Let A = 1 (mod 4) be a square-free integer, the equation p2 −Aq2 = k has solutions
if there exist integers a and b such that p2 = a2 + b2 + k. Necessary conditions to solve
the equation p2 −Aq2 = k are

1. k = 1 (mod 4), p is odd and q is even,

2. k = 3 (mod 4), p is even and q is odd,

3. k = 0 (mod 4), p and q are odd,

Let A = 3 (mod 4), necessary conditions to solve the equation p2 −Aq2 = k are

1. k = 1 (mod 4), p and q do not have the same parity,

2. k = 1−A (mod 8), p and q are odd,

3. k = 0 (mod 4), p and q are even,

then the equation p2 − Aq2 = k is equivalent to p2 + q2 = k (mod 4) and it has no
solution with k = 3 (mod 4).

Theorem 4.2.9 (Legendre) For all M and N prime and equal to 1 (mod 4), one of the

equations

Mp2 −Nq2 = ±1, p2 −MNq2 = 1

has solutions. For all M and N prime and equal to 3 (mod 4), the equation

Mp2 −Nq2 = ±1

has solutions.
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4.3 Complex Quadratic Rings

A quadratic equation x2 + x+ p = 0 with p in P generates a quadratic ring

kp = Z[ωp] = {a+ ωpb, a, b ∈ Z}

where ωp is a complex roots of the equation. Let z in k, its norm is a quadratic form

N(z) =
(
a− b

2

)2

+
b2

4
(4p− 1) = (a2 − ab+ pb2).

The units of kp satisfy N(z) = ±1, the primes of kp belong to P or their norm belongs to
P. For the units, the integers 2a− b and b are solutions of the equation

x2 +Ay2 = ±4, A = 4p− 1 > 0, (4.10)

where A cannot be a square since A = 3 (mod 4), equivalently

a2 − ab+ pb2 = ±1.

The norm of the units belonging to Z is positive and the units are ±1. Then kp is an
unitary principal ideal on Z. In the field of the fractions of kp, every element z has a
symmetric ±z̄N−1(z), according to the unit.

The primes of kp belong to P or their norm belongs to P, in the latter case b = 2b′ and
the integers a− b′ and b′ are solutions of the equation

x2 +Ay2 = π

where π belongs to P. The complex roots ωp = 1
2 (−1 + i

√
A) and ω̄p of the equation

x2 + x+ p = 0 are primes in kp, they have the norm p. The factorization of the integers
n = N(z), with z in kp, as n = zz̄ is unique up to the sign of the prime factors and for
every z of kp there exist z1, . . . , zm primes in kp such that z =

∏m
i=1 z

αi
i with positive

integers exponents.

Let π in P, if there exists B in Z such that B2 = (4π − 1)A−1, then

−1± iB
√
A

2

are complex primes in kp with the norm π and B is solution of the equation

1 +Az2 = 4π.
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Example. Let B = 3 with (π, p) = (61, 7), (367, 41) and (421, 47) and B = 5 with
(π, p) = (54, 5) and (421, 17) provide primes of kp.

For the complex primes of kp, the equation entails π > p and gcd(x, y, π) = 1 in Z,
and for every prime factor n of A, x2 = π (mod n) hence

(
π
n

)
= 1.

Example. Let p = 3, A = 11 is prime and x2 = π (mod 11), there exist solutions
(x, y, π) such as

(±6,±1, 47), (±3,±2, 53), (±2,±3, 103), (±8,±3, 163),

they yield the primes

7 + 2ωp, 5 + 4ωp, 5 + 206ωp, 11 + 326ωp

as x > 0 and y > 0, and those with negative components. They are not ordered though
their norms are and one cannot prove that there are infinitely many prime norms for
elements of kp as expected.

The equation x2 − x+ p = 0 with p in P generates a quadratic ring

Kp = {a+ θpb, a, b ∈ Z}

where θp = 1
2 (1 + i

√
A) is a complex roots of the equation. Let z in Kp, its norm is a

quadratic form
N(z) = a2 + ab+ pb2.

The units of Kp are defined by integers 2a + b and b are solutions of the equation
N(z) = ± 1, they are ±1. The primes of Kp are defined by integers a − b′ and b′

solutions of the equation
x2 +Ay2 = π

where b = 2b′ and πbelongs to P, they are deduced from the primes of Kp. The complex
roots θp and θ̄p, 1 − θp and 1 − θ̄p are primes of Kp with the norm p. If p is not prime,
the same properties are still valid for the units and the primes.

An equation x2 + sx+ t = 0, with p and q in Z, generates a real or complex irrational
ring I according to the sign ofA. Let θ be a complex roots of the equation, withA = 4t−
s2 > 0, its norm is N(θ) = t. Let z = a+ bθ in I , its norm is a quadratic form

N(z) = a2 − abs+ tb2.
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The units are ±1 and z = a + bθ where the integers a and b satisfy the equation
a2 − abs+ tb2 = ±1.
Example. With s = 4, the equation is equivalent to Pell’s equation

(a− 2b)2 − (4− t)b2 = ±1

and it has solutions with t = 3.

The primes of Kp are defined by integers a and b such that a − b
2 and b

2 , with b even,
are solutions of the equation

x2 −Ay2 = π, A = s2 − 4t > 0,

where π belongs to P. If t is prime, θ and θ̄, s + θ and s + θ̄ are prime in I , with the
norm t. Tables for the Pell equations provide the values of s and t for which the ring I
generated by the equation has a prime with norm π. The question is solved by the same
arguments if x2 has an integer coefficient.

4.4 Algebraic Numbers of Degree n

An algebraic number with degree n > 1 is the root of an irreductible polynomial with
degree n.

Theorem 4.4.1 (Liouville) For every algebraic number with degree n > 2, there exists

a constant c > 0 such that for all rationals pq−1∣∣∣∣√d− p

q

∣∣∣∣ > c

qn
.

The prime factors of xn±1 are characterized by the following theorems (Legendre, 1808).

Theorem 4.4.2 Every p prime such that p | (xn + 1) has the form p = 1 (mod 2n) or

p | (xω + 1) where ω is the quotient of n divided by an odd integer.

Proof. If p is even (respectively odd), x is odd (respectively even) and prime to p. By
assumption, we have

xn = −1 (mod p)
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and n is odd. From the euclidean division of p by 2n, p = 2na + k, with a and k in N,
k < 2n and from Fermat’s first theorem

xp−1 = xk−1 = 1 (mod p).

This is always true with k = 1, let k > 1 and let ω = gcd(n, k− 1). By Euler’s theorem,
there exist π and ρ such that πn− ρ(k − 1) = ω, and πn′ − ρk′ = 1 where n = ωn′ and
k − 1 = ωk′, this implies

xω = (−1)π (mod p)

where ω and π are odd. �

Theorem 4.4.3 Every p prime such that p | (xn − 1) has the form p = 1 (mod n) or

p | (xω − 1) where ω | n.

The proof is similar with the euclidean division of p by n. These methods have been
used previously by Fermat to find large prime integers and to determine whether integers
xn ± 1 larger than 2.106 are primes.

Theorem 4.4.4 The equation xn = b (mod a) with a in P such that gcd(a, b) = 1 and

gcd(n, a− 1) = ω, has solutions only if

b
a−1
ω = 1 (mod a),

then x is solution of the equation

xω − bm = 0 (mod a),

where mn+ ρ(a− 1) = ω.

The existence of integers m and ρ is due to Euler’s theorem 1.1.1. The equation xn = b

(mod a) has n solutions θ, θ2, . . . , θn (mod a). Under the conditions of Theorem 4.4.4,
let n = ωn′ and a = 1 + ωa′

xn = (xω)n
′

= (bm)
n
ω = b(b

a−1
ω )−ρ = b (mod a).

As a special case, the n solutions of the equation xn = 1 (mod a), with a in P and
gcd(n, a− 1) = ω, are solutions of xω = 1 (mod a).
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Theorem 4.4.5 (Lagrange) The equation xn = b (mod a), with a in P and b prime to

a, has a solution if

bm = ±1 (mod a),

where m divides a−1
n . Let ω = gcd(m,n) and let π and σ be such that

πn− ωσm = ω

1. if ω = 1, a solution is x = bπy where yn = (±1)σ (mod a),

2. if ω 6= 1, a solution x satisfies xω = bπy where y
n
ω = (±1)σ (mod a).

Under the conditions and denoting n = ωn′

xn = xωn
′

= bπn
′
yn
′

= b1+σmy
n
ω = b (mod a).

By Theorem 1.1.1, for every b prime to a, the equation xn = b (mod a), with a in P such
that n and a − 1 are relatively primes, has the solution x = bπ where π is the smallest
integer such that nπ + (a− 1)ρ = 1.

For every n, (x− 1) | (xn − 1) and the ratio

P (x) = (xn − 1)(x− 1)−1

is an algebraic polynomial. These polynomials P (x) have a unique factorization as a
product of irreductible polynomials

1. x3 − 1 = (x− 1)P2(x) where

P2(x) = x2 + x+ 1

has the complex roots (−1± i
√

3)/2,

2. x4 − 1 = (x− 1)(x+ 1)(x2 + 1) has the complex roots ±i,

3. x5 − 1 = (x− 1)P4(x) where

P4(x) = x4 + x3 + x2 + x+ 1

is an irreductible algebraic polynomial with 4 complex roots,
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4. x6 − 1 = (x− 1)(x+ 1)P1(x)P2(x), where

P1(x) = x2 − x+ 1

has the complex roots (1± i
√

3)/2,

5. x7 − 1 = (x+ 1)P6(x) where

P6(x) = x6 + x5 + x4 + x3 + x2 + x+ 1

has 6 complex roots,

6. x8 − 1 = (x− 1)(x2 + 1)(x4 + 1),

7. x9 − 1 = (x− 1)(x3 + 1)P2(x),

8. x10 − 1 = (x− 1)(x+ 1)P3(x)P6(x), where

P3(x) = x4 − x3 + x2 − x+ 1

is an irreductible algebraic polynomial with 4 complex roots,

9. x12 − 1 = (x− 1)(x+ 1)(x2 + 1)P1(x)P2(x)P3(x).

If n is an odd prime, P (x) is irreductible by Theorem 4.4.3. The polynomials x2k + 1,
k ≥ 1, are symmetric and irreductible in R and x2n+1 + 1 is a multiple of x+ 1 for every
n ≥ 1.

Let n > 2, the polynomials xn + 1 factorize according to the factorization of n, by
Theorem 4.4.2

1. x3 + 1 = (x+ 1)P1(x),

2. x5 + 1 = (x+ 1)P3(x),

3. x6 + 1 = (x2 + 1)P1(x2) where P1(x2) = x4 − x2 + 1 has 4 complex roots
(±
√

3± i)/2, square roots of the complex roots of P1(x),

4. x7 + 1 = (x+ 1)P5(x) where

P5(x) = x6 − x5 + x4 − x3 + x2 − x+ 1,
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5. x9 + 1 = (x + 1)P1(x)P1(x3) where P1(x3) = x6 − x3 + 1 is an irreductible
algebraic polynomial with 6 complex roots, cubic roots of the roots of P1(x),

6. x10 + 1 = (x2 + 1)P3(x2),

7. x11 + 1 = (x+ 1)P9(x) where

P9(x) = x10 − x9 + x8 − x7 + x6 − x5 + x4 − x3 + x2 − x+ 1,

8. x12 + 1 = (x4 + 1)P1(x4).

The polynomials P5(x) and P9(x) also have complex roots.

Proposition 4.4.6 Let k be odd in P, there is equivalence between k | n and each

following property

1. (xk − 1) | (xn − 1)

2. (xk + 1) | (xn + 1).

Proof. Let n = ka and let y = xk then (y − 1) | (ya − 1) and (y + 1) | (ya + 1)

(cf the above cases). Reversely, let n = ka + b, a and b < k in N, and assume that
(xk − 1) | (xn − 1) then xn − 1 = xkaxb − 1 and (xk − 1) | (xka − 1). It follows that

xn − 1 = xb(xk − 1)P (x) + xb − 1

with P (x) a polynomial with coefficients in Z, but this is contradictory to the assumption
with b < k. The proof is the same for xn + 1. �

The polynomials P1, P3, P5, P9, . . . , Pp−2 are irreductible algebraic polynomials,
prime factors of xp + 1, for p of P. These cases provide the rules for the factorization of
all polynomials xn − 1 and xn + 1 according to the factorization of n.
Example. The polynomial x15 + 1 is divided by x3 + 1 and x5 + 1

x15 + 1 = (x3 + 1)P3(x3) = (x5 + 1)P1(x5)

= (x+ 1)(x2 − x+ 1)P3(x3)

= (x+ 1)(x4 − x3 + x2 − x+ 1)P1(x5)

= (x+ 1)(x2 − x+ 1)(x4 − x3 + x2 − x+ 1)Q(x),

Q(x) = x8 + x7 − x5 − x4 − x3 + x+ 1.
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The polynomial x12 − 1 is divided by x2 − 1, x3 − 1, x4 − 1 and x6 − 1, where
Q6(x) = x6 − 1 = Q3(x2) = Q3(x)Q3(−x), with Q3(x) = x3 − 1.

4.5 Equations with Several Variables

An equation ax2 + by2 = 1 with a and b in Z has integer solutions (x, y) if and only
if gcd(a, b) = 1 and gcd(x, y) = 1 in Z, by (1.3). Lagrange (1770) proved that every
equation

A = a0t
n + a1t

n−1y + · · ·+ any
n

where A is prime to y is equivalent to an equation

1 = b0t
n + b1t

n−1x+ · · ·+ bnx
n

if there exists θ such that a0θ
n + a1θ

n−1 + · · · + an is multiple of A. In that case,
gcd(b0, . . . , bn) = 1 and solutions (x, t) satisfy gcd(x, t) = 1. Lagrange solved explicitly
the equations of the first and second degrees of this form.

The equation ax2 + by2 = cz2 is the equation of an ellipse with parameters depending
on z. Fermat’s used geometry of elliptic curves to solve 3rd degree equations such as
x3 + y3 = pz3 also studied by Lagrange and in Theorem 3.4.1. Here we consider some
higher degrees algebraic equations. The super-Fermat equations form a class of equations

axn + byr = czs (4.11)

with integers n, r, s larger than 2 and with integers a, b, c. They are classified according
to the value of

χ =
1

n
+

1

r
+

1

s
,

the hyperbolic equations are characterized by χ < 1, the elliptic equations by χ > 1 and
the euclidean equations χ = 1. Many hyperbolic and elliptic equations have solutions,
several of them were studied in Section 2.5. In the euclidean equations, the exponents
reduce to (4, 4, 2), (3, 3, 3), (3, 6, 2) and their permutations. With the constants
a = b = c = 1, the euclidean cases (3, 3, 3), (4, 4, 2) and its permutations have no
solutions. The equation

x3 + y6 = z2
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has solutions which are those of the equation x3 + y3 = z2, where y = 1 and
(x, z) = (2,±3) by Proposition 3.1.12.

The equation

x2 + y6 = z3

has no solution with x = 1 by Theorem 3.3.4 about Catalan’s equation. The equation
x2 +y3 = z3 has the unique solutions (x, y, z) = (±13, 7, 8) but 7 is not a square and the
equation with exponents (2, 6, 3) has no solution. These examples show that the curves
are not algebraically equivalent under a permutation of the exponents.

The elliptic equations have the sets of exponents (2, 2, k) with k ≥ 2 or (2, 3, k) with
k = (3, 4, 5).

Proposition 4.5.1 The equation

x2 + y2 = z5

has the solution (x, y, z) = (±4,±4, 2) and infinitely many solutions in Z∗3 with z odd

with prime divisors pi = 1 (mod 4).

Proof. If z is even, x and y are necessarily even and (x, y, z) = (±4,±4, 2) is solution.
Assuming there exist another solution, z is odd and x and y do not have the same parity.
Every prime pi is sum of two squares by Legendre’s Theorem 1.2.7, their product is sum
of two squares by Equation (1.5) and every z product of prime pi = 1 (mod 4) is sum of
two squares. �

Proposition 4.5.2 The equation

x2 + y2 = zk

with k ≥ 2 has infinitely many solutions in Z∗3 with z odd with prime divisors pi = 1

(mod 4).

The existence of solutions of the equations where x and y have even exponents depends
on the value of k. The equation

x2 + y4 = z3

has the even solutions (x, y, z) = (±16,±4, 8).
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Proposition 4.5.3 Let n, p, q, k in N such that np+ 1 = ak and np = bq, the equation

xp + yq = zk

has the even solution (x, y, z) = (2n, 2b, 2a).

It applies to determine the even solutions of the equations with an odd exponents k such
as (x, y, z) = (±4,±2, 2) for the equation x2 + y4 = z5, (x, y, z) = (8, 8, 4) for the
equation x3 + y3 = z5, and (x, y, z) = (±25, 4, 2) is solution of the equation x2 +

y5 = z11. Obviously, gcd(x, y) > 1 and they are the smallest integers solutions of these
equations.

Proposition 4.5.4 The equation

x2 + y3 = z2

has infinitely many solutions in Z∗3.

Proof. Assuming that gcd(x, z) = 1, gcd(x− z, x+ z) = 1 by the equality y3 = (z+

x)(z−x), hence x−z and x+z are relatively prime cubes, x, z are their sum or difference.
All sums or difference of cubes provide a solution (x, y, z) and there exist infinitely many
solutions. �

The solutions of Proposition 4.5.4 with gcd(x, z) = 1 such as (1, 2, 3) or (13, 3, 14) are
not the unique solutions, for example we have the triples of solutions (3, 3, 6), (6, 4, 10),
(13, 3, 14), (3, 6, 15), they cannot be reduced by division by a common factor of the
coordinates for the equation is not homogeneous.

Proposition 4.5.5 The equation

x2 + y3 = z3

has solutions (x, y, z) in Z∗3 such that gcd(x, y, z) = 1, x and z are odd, and y is even,

in particular (±13, 7, 8) is solution.

Proof. The equation is equivalent to x2 = (z−y)(y2+yz+z2) therefore z−y divides x.
Denoting y = u+v and z = u−v, y+z = 2u and y−z = 2v < 0, the equation becomes
x2 + 2v(v2 + 3u2) = 0 where v2 + 3u2 is odd because gcd(y − z, y2 + yz + z2) = 1 in
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that case. Let x = 2a, 2a2 + v(v2 + 3u2) = 0 which implies v = ±2 due to the parity of
v2+3u2 but the equation a2 = ±(4+3u2) has an integer solution if 3u2 = (a−2)(a+2).
Let d = gcd(a− 2, a+ 2), it follows that d = ±2,±4,±a and there is no solutions such
that y and z have the same parity which allows only x and z odd and y even.

Furthermore gcd(x, y, z) = 1, let d = gcd(z − y, y2 + yz + z2) with z − y > 0 then
d | 3yz and d | 3(y2 + z2) therefore d = 1 or 3, otherwise d | y or z and d | (y2 + z2)

which is contradictory to gcd(x, y, z) = 1. With d = 3, x = 3a, z − y = 3b and the
equation becomes

a2 = b(y2 + 3yb+ 3b2)

where b | a and b | (y2 + 3yb + 3b2), equivalently b | y and this is contradictory to
gcd(x, y, z) = 1. It follows that

gcd(z − y, y2 + yz + z2) = 1,

z − y = n2 and y2 + yz + z2 = k2, with odd integers n and k such that gcd(k, n) = 1

and x = kn. We obtain y + z = 2y + n2, yz = y2 − yn2 and

k2 = (y + z)2 − yz = 3y2 + 3yn2 + n4,

where n - 3y if n > 1. With n = 1, the equation reduces to 3y2 + 3y + 1 = x2 and we
obtain a solution with y = 7, x2 = 169. �

Proposition 4.5.6 The equation

x2 + y3 = z4

has no solution in Z∗3.

Proof. The equation with y = 1 has no solution, from the solutions of Catalan’s
equation. otherwise

y3 = (z −
√
x)(z +

√
x)(z − i

√
x)(z + i

√
x)

the roots are distinct and the polynomials z ± x and z ± ix are irreductible in the field
they generate, their product cannot be a cube. �

Propositions 3.1.7, 3.4.3, 3.1.10 and Dirichlet’s Theorem are cases where (4.11) do
not have non trivial integer solutions, Proposition 3.1.11 provides an example of equation
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having infinitely many integer solutions. Let us assume the condition a = b = c = 1

in (4.11). For every integer n, the equation with χ > 1 and x = 1 is equivalent to
zs − yr = 1 and there exist solutions such as 1 + 23 = 32 and, with s = 1, 1 + 22 = 5

and every prime p such that 1 + 2r = p. Equation (4.11) with all exponents strictly larger
than 2 has no solution if one of n, r and s divides the other exponents. Let n | r, s, (4.11)
is equivalent to

xn + (yk)n = (zl)n,

by Fermat’s last theorem it has no solution. The equation x2 + y3 = z3 has solutions and
x2 + y3 = z4 has no solution. More equations are studied in the last chapter.

Equation (4.11) has no solution with relatively prime x, y, z in N∗ satisfying xm = a

(mod y), zl = b (mod y) where m | n and l | s, a and b in N∗ and such that ak1 6= bk2

(mod y) for every k1, k2 > 1. For every triple (x, y, z) such that gcd(x, y, z) = 1, the
least integers a > 1, b > 1, k1 and k2 > 1 can be computed but they may be large.

Bruin (1999) established that the hyperbolic equations (4.11) without constants and
with gcd(x, y, z) = 1 has no solution for (n, r, s) = (2, 4, 6) and its permutations and
he found the unique solution of the equation for (n, r, s) = (2, 8, 3). The hyperbolic
equation

x2 + y4 = z3 (4.12)

has the solution (x, y, z) = (±16, 4,±8) in Z∗3.

Weierstrass’s equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

is the is reparametrized as y2 = b0x
3+b1x

2+b2x+b3 on Q and it amounts to an equation
Y 2 = X3 + c1X + c2 with rational coefficients

c1 = a4 +
a1a3

2
− 1

3

(
a2 +

a2
1

4

)
,

c2 = a6 +
a2

3

4
− 1

3

(
a2 +

a2
1

4

)(
a4 +

a1a3

2

)
and the variables

X = x− b1
3
, Y = y +

a1x

2
+
a3

2
.
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The solution as a real function Y = f(X) or X = g(Y ) is explictly known and its
projection on Z or Q is often empty. At y = x, the equation is the intersection of a
parabolic and a hyperbolic curve. There exists a single intersection point in R, it lies on
the positive axis Y > 0 if c1 + c2 < 0, and on the negative axis if c1 + c2 > 0.

Solving an equation

x2 + ay2 + bz2 + cxy = n

depends on the representation of n as sums of squares. By Theorem 2.4.3, if n = 1

(mod 4) in P has the form n = n2
1 + n2

2, the equation becomes ay2 + bz2 + cn1y = n2
2

with x = n1 and it can be solved as previously. If n is a sum n = n2
1 + · · · + n2

4, the
equation becomes ay2 + bz2 + cn1y = m where m = n2

2 + · · ·+ n2
4.

A conic is determined by an homogeneous quadratic form in R3

f(x, y, z) = a1x
2 + b1y

2 + c1z
2 + 2a2yz + 2b2xz + 2c2xy.

Cauchy studied a third degree homogeneous equation

ax3 + by3 + cz3 = 3dxyz

by differential calculus. Hermite, Serret, Dirichlet proposed several method to solve
algebraic equation with a prime degree, in particular methods of substitutions to deduce
several solutions from a first one. Reparametrizations have also been used for the
resolution of the equations.

4.6 Twin-primes

The twin-primes are the sets of numbers p1 < p2 in P such that p1 and p2 have the
same distance d. With an odd distance, one of p1 and p2 is odd and the other one is even,
so they reduce to (2, 5) for d = 3, (2, 7) for d = 5, (2, 11) for d = 9, etc. With the even
distances d = 2, 4, 6, 8, 10, the twin-primes lower than 100 are given in the next Table.

For every integer n, the prime factors of n and n + 1 are different since their parities
differ. Let p in P be such that p | n and (p+ 1) | (n+ 1), for example 2 | 14 and 3 | 15,
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Table 4.4: Twin-primes

d = 2 (3,5), (5,7), (11,13), (17,19), (29,31), (41,43), (59,61),
(71,73),

d = 4 (3,7), (7,11), (13, 17), (19, 23), (43,47), (67,71),
(79,83),

d = 6 (5,11), (7,13), (11, 17), (13, 19), (17,23), (23,29),
(31,37), (41,47),(53, 59),(67,73),(83, 89),

d = 8 (3,11), (5,13), (11,19),(23,31), (29,37), (53,61),
(59,67), (89,97),

d = 10 (3,13), (13, 23), (19, 29), (31, 41), (37,47), (43,53),
(61,71), (73,83) , (79,89).

3 | 15 and 4 | 16, 4 | 24 and 5 | 25, 5 | 35 and 6 | 36. There exist infinitely such numbers
and

n+ 1

p+ 1
= 1 (mod p),

n− p
p+ 1

= 0 (mod p).

Let p in P such that p | n and (p+ 2) | (n+ 2), for example 2 | 6 and 4 | 8, 2 | 14 and
4 | 16, 3 | 33 and 5 | 35, then

2(n− p)
p+ 2

= 0 (mod p).

All integers p prime and n such that p | n and there exists k satisfying (p+k) | (n+k)

has similar properties with the equivalence

k(n− p)
p+ k

= 0 (mod p).

In the above examples, p and p+ k are twin-primes but it is not proved that for each k the
properties of their prime factors occur for infinitely many n and p.

Bertrand’s postulate extends to twin-primes with small values of d.

Proposition 4.6.1 For all d and sufficiently large n, there exist twin primes p and p + d

in P in every interval [kn, (k + 1)n], for n sufficiently large.
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This is a consequence of Theorems 4.1.1 and 4.1.2. This is generally not true for the
first pair of twin-primes. This implies the existence of infinitely many twin-primes, for
every integer d.

Hardy and Littlewood’ conjecture about the number N2(n) of twin-primes up to an
integer n states that

N2(n) = 2c2

∫ n

2

dx

(log x)2

with a constant
c2 =

∏
p>2,p∈P

p(p− 2)

(p− 1)2
.

4.7 Exercises

Exercise 4.1. Find the primes of Q[
√

5] and Q[i
√

5].

Exercise 4.2. Let z be a complex prime in Z[i] and let a in C such that gcd(a, z) = 1,
prove that zN(z)−1 = 1 (mod N(z)) if N(z) = 1 (mod 4) and zN

2(z)−1 = 1

(mod N2(z)) if N(z) = 3 (mod 4).
Exercise 4.3 Find all roots of the equations

x2 − 2y2 = ±1,

x2 − 2y2 = ±2.

Exercise 4.4. Find the roots of the equation x6 = 7 (mod 3).
Exercise 4.5. Let p in P, prove that the equation y2 = x3 − p2x has no solution.
Exercise 4.6. Find the solutions of the equation x2 + y3 = z4.
Exercise 4.7. Find the solutions of the equation x2 + y3 = z5.
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