Wild edible mushrooms (WEM) are non-wood forest products that are widely used in the diets of many people in tropical Africa. In order to improve local diets and make the most of these natural resources, the nutritional quality of 28 wild and domesticated species in Cameroon and the Democratic Republic of Congo was analyzed. Measurements were taken of ash, water, carbohydrate, crude fiber, lipid, protein and energy content. The results indicate that these mushrooms are rich in lipids (11.75 g/100 g DM), proteins (25.89 g/100 g DM), crude fiber (13.91 g/100 g DM), water (86.82 g/100 g FM), ash (6.51 g/100 g DM), carbohydrates (27.57 g/100 g DM) and energy (324.13 kcal/100 g). Highly significant differences (P < 0.05) were observed between species. For example, Termitomyces sp.5 (28.78 g/100 g DM) is rich in ash, while P. pulmonarius (28.52 g/100 g DM) stands out for its high lipid content and T. griseiumbo (49.38 g/100 g DM) has a remarkable level of protein. In terms of carbohydrates, P. ostreatus (55.51 g/100 g DM) stands out, while P. tuber-regium (26.79 g/100 g DM) has a notable proportion of crude fiber. In terms of energy, P. pulmonarius (459.76 kcal/100 g DM) still stands out. These results demonstrate the significant nutritional potential of these mushrooms, which are using to reduce nutritional deficiencies and facilitate intestinal transit thanks to their fiber content. Domestication of these mushrooms would also ensure continuous availability throughout the year, thereby reducing dependence on natural resources.
Published in | Journal of Food and Nutrition Sciences (Volume 13, Issue 3) |
DOI | 10.11648/j.jfns.20251303.16 |
Page(s) | 156-170 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Domestication, Non-timber Forest Products, Nutritional Deficiencies, Proximal Composition, Wild Edible Mushrooms
Order Number | Species | Family | Type of substrate | Sample collection site |
---|---|---|---|---|
1 | Cantharellus sp. | Cantharellaceae | Lignicolous | D. R. Congo (Lubumbashi) |
2 | Pleurotus tuber-regium | Pleurotaceae | Sclerotium | D. R. Congo (Tshela) |
3 | Pleurotus citrinopileatus | Pleurotaceae | Lignicolous | Cameroon (Yaoundé) |
4 | Pleurotus pulmonarius | Pleurotaceae | Lignicolous | Cameroon (Mount Eloundem) |
5 | Volvariella volvacea | Plutaceae | Lignicolous | Cameroon (UY1 Campus) |
6 | Termitomyces sp.1 | Lyophyllaceae | Meules | Cameroon (Bandjoun) |
7 | Tricholomopsis aurea | Tricholomataceae | Lignicolous | Cameroon (Bambui) |
8 | Termitomyces fombapei | Lyophyllaceae | Terricole (grinding stones) | Cameroon (Santchou) |
9 | Pleurotus ostreatus | Pleurotaceae | Lignicolous | Cameroon (Bamenda) |
10 | Termitomyces sp. 4 | Lyophyllaceae | Terricole (grinding stones) | Cameroon (Santchou) |
11 | Termitomyces mboukouina | Lyophyllaceae | Terricole (grinding stones) | Cameroon (Santchou) |
12 | Termitomyces melongii | Lyophyllaceae | Terricole (grinding stones) | Cameroon (Santchou) |
13 | Termitomyces sp. 2 | Lyophyllaceae | Terricole (grinding stones) | Cameroon (Santchou) |
14 | Termitomyces aff. clypeatus | Lyophyllaceae | Terricole (grinding stones) | Cameroon (Santchou) |
15 | Termitomyces mbongonensis | Lyophyllaceae | Terricole (grinding stones) | Cameroon (Santchou) |
16 | Termitomyces sp. 3 | Lyophyllaceae | Terricole (grinding stones) | D. R. Congo (Kisantu) |
17 | Auricularia judae | Auricullariaceae | Lignicolous | Cameroon (Yaoundé |
18 | Termitomyces sp. 5 | Lyophyllaceae | Terricole (grinding stones) | Cameroon (Santchou) |
19 | Pleurotus sajor-caju | Pleurotaceae | Lignicolous | Cameroon (Mount Eloundem) |
20 | Pleurotus pulmonarius (cultivated) | Pleurotaceae | Corncobs | Cameroon (Cryptogamy Lab.) |
21 | Termitomyces reticulatus | Lyophyllaceae | Terricole (grinding stones) | Cameroon (Kamna) |
22 | Termitomyces letestui (form, 1) | Lyophyllaceae | Terricole (grinding stones) | Cameroon (Mount Eloundem) |
23 | Termitomyces meduis | Lyophyllaceae | Terricole (grinding stones) | Cameroon (U. Y1 Campus) |
24 | Termitomyces congolensis | Lyophyllaceae | Terricole (grinding stones) | D. R. Congo (Lubumbashi) |
25 | Termitomyces letestui (form, 2) | Lyophyllaceae | Terricole (grinding stones) | Cameroon (Mbouda) |
26 | Agaricus bisporus (cultivated) | Agaricaceae | Horse exchange | Cameroon (Bought in Yaoundé super market) |
27 | Pleurotus sajor-caju (cultivated) | Pleurotaceae | Corncobs | Cameroon (Cryptogamy Lab.) |
28 | Termitomyces griseiumbo | Lyophyllaceae | Terricole (grinding stones) | Cameroon (Makénéné) |
Order number | Herbariumnumber | Species | Ashes (g/100g DM) | Lipids (g/100g DM) | Water content (g/100g MF) | Dry matter (g/100g DM) |
---|---|---|---|---|---|---|
1 | DM 1801 | Cantharellus sp. | 13,78±0,43b | 23,82±0,79cd | 81,59±0,17o* | 18,41±0,17a** |
2 | DM 1825 | Pleurotus tuber-regium | 2,12±0,07op | 15,29±0,28i | 86,28±0,22jk | 13,72±0,22de |
3 | DM 888 | Pleurotus citrinopileatus | 6,21±0,55j | 17,32±0,03f | 87,17±0,02ij | 12,83±0,02efg |
4 | DM 1288 | Pleurotus pulmonarius | 1,27±0,02q | 28,52±0,73a** | 90,55±0,31bc | 9,45±0,31lm |
5 | DM 1743 | Volvariella volvacea | 9,55±0,42ef | 16,79±0,12fg | 82,07±0,10no | 17,93±0,10a |
6 | DM 1578 | Termitomyces sp.1 | 4,87±0,28k | 21,32±0,45e | 84,35±0,50l | 15,65±0,50c |
7 | DM 1867 | Tricholomopsis aurea | 4,79±0,09k | 16,01±0,46ghi | 85,93±0,60k | 14,07±0,60d |
8 | DM 1282 | Termitomyces fombapei | 3,74±0,36lm | 4,52±0,67m | 83,29±0,86lm | 16,71±0,86bc |
9 | DM 966 | Pleurotus ostreatus | 4,69±0,43k | 2,28±0,00no | 85,99±0,72k | 14,01±0,72d |
10 | DM 1781 | Termitomyces sp. 4 | 2,26±0,19op | 2,54±0,64no | 89,02±0,63def | 10,98±0,63ijk |
11 | DM 1272 | Termitomyces mboukouina | 1,59±0,07pq | 3,06±0,08n | 87,71±0,72ghi | 12,29±0,72fgh |
12 | DM 1728 | Termitomyces melongii | 0,83±0,00q | 2,86±0,28no | 82,49±0,70mno | 17,51±0,70ab |
13 | DM 1292 | Termitomyces sp. 2 | 8,78±0,30fg | 2,32±0,03no | 82,16±0,50no | 17,84±0,50a |
14 | DM 1294 | Termitomyces. aff. clypeatus | 4,35±0,31kl | 3,33±0,21n | 86,36±0,50jk | 13,64±0,50de |
15 | DM 1290 | Termitomyces mbongonensis | 8,79±0,28fg | 2,54±0,65no | 85,68±0,80k | 14,32±0,80d |
16 | DM 1268 | Termitomyces sp. 3 | 8,48±0,16g | 2,94±0,07n | 85,50±0,70efg | 11,50±0,70hij |
17 | DM 1866 | Auricularia judae | 0,79±0,29q* | 23,97±1,16c | 86,63±0,38ijk | 13,37±0,38def |
18 | DM 1720 | Termitomyces sp. 5 | 26,78±0,30a** | 1,83±0,24o* | 84,14±0,50l | 15,86±0,50c |
19 | DM 895 | Pleurotus sajor-caju | 2,71±0,24no | 16,00±0,28ghi | 89,75±0,35cd | 10,25±0,35kl |
20 | DM1782 | Pleurotus pulmonarius (cultivated) | 3,18±0,25mn | 22,92±0,63d | 89,55±0,48cde | 10,45±0,48jkl |
21 | DM 1700 | Termitomyces reticulatus | 1,23±0,13q | 16,56±0,32fgh | 93,68±0,31a** | 6,32±0,31n* |
22 | DM 213 | Termitomyces letestui (form, 2) | 10,23±1,03e | 15,17±0,13i | 87,34±0,37hij | 12,66±0,37efg |
23 | DM 372 | Termitomyces meduis | 12,80±0,96c | 16,71±0,18fg | 87,15±0,07ij | 12,85±0,07efg |
24 | DM 1702 | Termitomyces congolensis | 6,63±0,12ij | 12,53±0,34j | 82,72±0,48mn | 17,28±0,48ab |
25 | DM 150G | Termitomyces letestui (form, 1) | 7,58±0,15h | 15,63±0,07hi | 84,22±0,38l | 15,78±0,38c |
26 | DM 1707 | Agaricus bisporus (cultivated) | 11,43±0,13d | 13,15±0,92j | 90,46±0,61bc | 9,54±0,61lm |
27 | DM 215 | Pleurotus sajor-caju (cultivated) | 3,27±0,00mn | 10,01±0,67k | 91,42±0,12b | 8,58±0,12m |
28 | DM 224 | Termitomyces griseiumbo | 8,88±0,31fg | 5,60±0,28l | 90,96±0,35b | 9,04±0,35m |
Average ± 𝝈 | 6,48±0,28% | 11,97±0,38% | 86,68±0,44% | 13,31±0,44% |
Order number | Herbariumnumber | Species | Proteins (g/100g DM) | Carbohydrates (g/100g DM) | Crude fibers (g/100g MS) | Energies (Kcal/100g MS) |
---|---|---|---|---|---|---|
1 | DM 1801 | Cantharellus sp. | 19,30±0,15n | 18,05±0,09jklm | 6,55±0,63 p | 364,14±7,12efg |
2 | DM 1825 | Pleurotus tuber-regium | 12,00±0,35q | 30,06±0,50fg | 26,79±0,29a** | 305,93±2,54mn |
3 | DM 888 | Pleurotus citrinopileatus | 23,21±0,34m | 31,92±0,34ef | 8,36±0,12n | 377,04±0,31d |
4 | DM 1288 | Pleurotus pulmonarius | 18,03±0,95no | 32,95±0,88e | 8,49±0,01n | 459,76±15,10a** |
5 | DM 1743 | Volvariella volvacea | 33,31±0,44cd | 11,77±0,09o* | 8,20±0,27n | 331,43±1,08jk |
6 | DM 1578 | Termitomyces sp.1 | 24,43±1,19lm | 19,76±1,24ij | 14,44±0,14h | 366,80±4,13def |
7 | DM 1867 | Tricholomopsis aurea | 15,96±2,10p | 39,44±2,41c | 10,43±0,61m | 362,89±4,20efg |
8 | DM 1282 | Termitomyces fombapei | 27,00±0,43jk | 35,29±0,21d | 12,97±0,02i | 288,96±6,04op |
9 | DM 966 | Pleurotus ostreatus | 12,94±0,22q | 55,51±0,31a** | 10,55±0,24lm | 294,44±0,06no |
10 | DM 1781 | Termitomyces sp. 4 | 34,72±0,34bc | 30,01±0,42fg | 19,58±0,00ef | 281,46±5,79p |
11 | DM 1272 | Termitomyces mboukouina | 30,54±0,76fgh | 28,57±0,84g | 23,67±0,55b | 266,18±2,29q |
12 | DM 1728 | Termitomyces melongii | 35,61±0,37b | 32,02±0,24ef | 11,16±0,06kl | 295,40±2,54no |
13 | DM 1292 | Termitomyces sp. 2 | 33,32±0,23cd | 16,76±0,26m | 21,06±0,00d | 220,92±0,31s |
14 | DM 1294 | Termitomyces. aff. clypeatus | 32,98±0,77cde | 29,84±1,07fg | 15,77±0,23g | 281,61±1,90p |
15 | DM 1290 | Termitomyces mbongonensis | 32,26±0,53def | 21,01±0,73hi | 21,14±0,00d | 235,70±5,85r |
16 | DM 1268 | Termitomyces sp. 3 | 27,78±0,18ij | 31,78±2,44ij | 15,62±0,02g | 264,68±10,13q |
17 | DM 1866 | Auricularia judae | 5,68±0,52r* | 33,39±0,55de | 22,60±0,20c | 372,85±10,50de |
18 | DM 1720 | Termitomyces sp. 5 | 25,48±2,38kl | 19,14±2,07ijkl | 11,99±0,62j | 190,63±2,16t* |
19 | DM 895 | Pleurotus sajor-caju | 13,47±0,50q | 38,69±0,60c | 19,03±0,33f | 352,04±2,54gh |
20 | DM1782 | Pleurotus pulmonarius (cultivated) | 31,09±0,03efgh | 19,63±0,04ijk | 12,72±0,24i | 408,75±5,09c |
21 | DM 1700 | Termitomyces reticulatus | 24,10±1,80lm | 43,41±1,26b | 7, 47±0,19o | 422,72±2,92b |
22 | DM 213 | Termitomyces letestui (form, 2) | 32,28±3,37def | 21,20±0,48hi | 6,52±0,21p* | 358,25±1,20fgh |
23 | DM 372 | Termitomyces meduis | 36,13±0,36b | 14,33±0,50n | 7,18±0,05op | 352,23±1,65gh |
24 | DM 1702 | Termitomyces congolensis | 29,11±0,14hi | 22,80±0,17h | 11,60±0,56jk | 320,65±3,11kl |
25 | DM 150G | Termitomyces letestui (form, 1) | 31,66±0,57defg | 17,46±0,33klm | 11,58±0,50jk | 338,39±0,63ij |
26 | DM 1707 | Agaricus bisporus (cultivated) | 29,95± 0,24gh | 16,11±0,31mn | 19,76±0,44e | 302,87±8,33mn |
27 | DM 215 | Pleurotus sajor-caju (cultivated) | 19,74±0,81n | 43,97±0,51b | 14,00±0,00h | 346,65±6,10hi |
28 | DM 224 | Termitomyces griseiumbo | 49,38±1,25a** | 16,99±1,56lm | 10,44±0,18m | 314,56±2,54lm |
Average ± 𝝈 | 26,48±0,76% | 27,57±0,73% | 13,91±0,24% | 324,13±4,15% |
AFNOR | Association Française de Normalisation |
AOAC | Association of Official Analytical Chemists |
A C | Ash Content |
DM | Dry Matter |
FM | Fresh Matter |
L.C | Lipid Content |
P. | Pleurotus |
T. | Termitomyces |
WEM | Wild Edible Mushrooms |
F AO | Food and Agriculture Organisation |
FAOSTAT | Food and Agriculture Organisation Statistics |
[1] | Kouame K. B., Koko A. C., Diomande M., Konate I., & Assidjo N. E. 2018. Caractérisation physicochimique de trois espèces de champignons sauvages comestibles couramment rencontrées dans la région du Haut-Sassandra (Côte d’Ivoire). Journal of Applied Biosciences. 121(1): 12110-12120p. |
[2] | Boa E., 2006. Champignons comestibles sauvages: vue d’ensemble sur leur utilisation et leur importance pour les populations. Produit Forestiers Non Ligneux. FAO. 17: 1-170p. |
[3] | F. A. O., 2016. Food and Agriculture Organization of the United Nation. 2016. |
[4] | Hebsale Mallappa V. K., & Shirur M. 2021. Climate Change and Resilient Food Systems: Issues, Challenges, and Way Forwards. In Climate Change and Resilient Food Systems: Issues, Challenges, and Way Forwards. |
[5] | F. A. O., 2013. «FAOSTAT United Nations, Food and Agriculture Organization», 2013 (en ligne). Disponible sur: |
[6] | F. A. O., 2018. L’état de la sécurité alimentaire et de la nutrition dans le monde; FAO, FIDA, OMS, PAM, et UNICEF. Renforcer la résilience face aux changements climatiques pour la sécurité alimentaire et la nutrition. Rome, pp. 2 - 37. |
[7] | F. A. O. 2021. Afrique - Aperçu régional de l’état de la sécurité alimentaire et de la nutrition 2021. In Afrique - Aperçu régional de l’état de la sécurité alimentaire et de la nutrition 2021. |
[8] | Degreef J., Demuynck L., Dibaluka S., Diansambu I., Kasongo B., Mukandera, A., Nzigidahera B., Yorou S. N., & De Kesel A. 2016b. African mycodiversity: a huge potential for mushroom trade and industry. In: Baars & Sonnenberg (Eds). Science and cultivation of edible fungi. International Society of Mushroom Science. |
[9] | Black R. E., Morris S. S. & Bryce J. 2003. The course and treatment of manic-depressive illness: An update. THE LANCET. 361: 2226-2234p. |
[10] | Enow Egbe A., Tonjock R. K., Ebai M. T., Nji T. M. & Mih A. M. 2013. Diversity and distribution of macrofungi (mushrooms) in the Mount Cameroon Region. Journal of Ecology and The Natural Environment. 5(10): 318-334p. |
[11] | Guissou K. M. L., Lykke A. M., Sankara P. & Guinko S. 2008. Declining wild mushroom recognition and usage in Burkina Faso. Economic Botany. 62(3): 530-539p. |
[12] | Kinge T. R., Nji T. M., Ndam L. M., & Mih A. M. 2014. Mushroom research, production and marketing in Cameroon: A review. Issues in Biological Sciences and Pharmaceutical Research. 2(7): 69-74p. |
[13] | Kansci G., Mossebo D. C., Selatsa A. B., & Fotso M. 2003. Nutrient content of some mushroom species of the genus Termitomyces consumed in Cameroon. Nahrung - Food. 47(3): 213-216p. |
[14] | Mossebo D. C. & Njouonkou A. L., 2010. Répartition géographique et valeur nutritive de quelques espèces de Termitomyces (Basidiomycètes) du Cameroun. In: X Van der Burgt, J. Van der Maesen et Onana J. M (eds), Proceeding of the 16th AETFAT Congress, Yaoundé Cameroon. Systématique et conservation des Plantes Africaines, pp. 151-157. Royal Botanic Garden, Kew. |
[15] | Johnsy G., Davidson Sargunam S., Dinesh M., & Kaviyarasan V. 2011. Nutritive Value of Edible Wild Mushrooms Collected from the Western Ghats of Kanyakumari District. Botany Research International. 4(4): 69-74p. |
[16] | Teke A. N., Evelyn B. M., Lawrence M. N., & Kinge T. R. 2020. Nutrient and Mineral Contents of Wild Edible Mushrooms from the Kilum-Ijim Forest, Cameroon. Nutrition And Food Science Journal. 3(2): 1-11p. |
[17] | Gruen H. E., & Wong W. M. 1982. Distribution of cellular amino acids, protein, and total organic nitrogen during fruit body development in Flammulina velutipes. II. Growth on potato-glucose solution. Canadian Journal of Botany. 60(8): 1342-1351p. |
[18] | Zakhary J. W., El-Mahdy A. R., Abo-Bakr T. M. & Tabey-Shehata A. M. E. 1984. Cultivation and chemical composition of the paddy-straw mushroom (Volvariella volvaceae). Food Chemistry. 13(4): 265-276p. |
[19] | Agrahar-Murugkar D., & Subbulakshmi G. 2005. Nutritional value of edible wild mushrooms collected from the Khasi hills of Meghalaya. Food Chemistry. 89(4): 599-603p. |
[20] | Wani B. A., Bodha R. H., & Wani A. H. 2010. Nutritional and medicinal importance of mushrooms. Journal of Medicinal Plants Research. 4(24): 2598-2604p. |
[21] | Tiecoura K., Gonedele B. S., Assi B. D., N’nan-Alla O., Kouassi A., & Simon-Pierre nguetta A. 2016. Le palmier mort, Elaeis guineensis Jacq., support de production de champignons : étude de quelques paramètres de production de Volvariella volvacea. Journal of Animal &Plant Sciences. 27(3): 4260-4271p. |
[22] | Ninkwango T. A., 2013. Rapport d’activité des organisations et de structuration du milieu. Yaoundé, Cameroun: la voix du paysan, 12p. |
[23] | Malaisse F., A. De kesel, N'gasse G. & Lognay G. 2008. Diversity of mushrooms eaten by Bofi Pygmies of the Lobaye (Central African Republic). Geo-Eco-Trop. 32: 1-8p. |
[24] | Ogundana S. K. & Fagade O. E. 1982. Nutritive Value Of Some Nigerian Edible. Food Chemistry. 8. 263-268p. |
[25] | Ijioma B. C., Ihediohanma N. C., Onuegbu N. C. and Okafor D. C. 2015. Nutritional composition and some anti-nutritional factors of three edible mushroom species in south eastern Nigeria. European Journal of Food Science and Technology. 3(2): 57-63. |
[26] | Nwoko M. C., Onyeizu U. R., Okwulehie I. C. & Ukoima H. 2017. Nutritional and Bioactive Compounds : Evaluation of Pleurotus pulmonarius (Fries) Quel. Fruit Bodies Grown on Different Wood Logs in. Journal of Bioremadiation & Biodegradation. 8(3): 5p. |
[27] | Oba R, Tsigaing T. F., Ngouné D. P., Choupo G., Fomena T. M., Mossebo D. C., Ryvarden L., 2019. Aphyllophorales of Africa 35 - New species of Antrodiella and Ceriporiopsis from Cameroon. Synopsis fungorum. 40: 74-78p. |
[28] | Metsebing Pascal Blondo 2020. Taxonomie, chimiotaxonomie et évaluation des activités antifongiques et antibactériennes de quelques Basidiomycètes supérieurs (Agaricales et Polyporales) du Cameroun et de la R. D. Congo. These de Doctorat, 209p. |
[29] | Tsigain F. T., Metsebing B.-P., Mossebo D. C., Ryvarden L. R., Oba R., Guifo C., Ekemé N., Mvomo Andela F. T., Megne A. L., Simé N. A., Ngo Mbock S. E., & Fokoua U. L. 2022. Enzymatic Activities, Characteristics of Wood-Decay and Wood Substrate Specificity within Genera of Some Wood-Rotting Basidiomycetes from Cameroon and Tropical Africa. European Journal of Biology and Biotechnology. 3(1): 11-23p. |
[30] | Dijk V. H., Onguene N. A., & Kuyper T. W. 2003. Knowledge and utilization of edible mushrooms by local populations of the rain forest of South Cameroon. Ambio. 32(1): 19-23p. |
[31] | Parent G. and Thoen D. 1977. Food value of edible mushrooms from Upper-Shaba Region. Economic Botany. 31: 436-445p. |
[32] | Eyi Ndong H., Degreef J. & De Kesel A. 2011. Champignons comestibles des forêts denses d ’ Afrique centrale Taxonomie et identification. Abc Taxa. 10: 262p. |
[33] | Nikuze N., Nzigidahera B., & Degreef J. 2020. Analyse socio-économique de la filière des champignons sauvages comestibles des forêts claires de Rumonge (Sud-Ouest du Burundi) Méthodologie Milieu. Tropicultura. 38(2): 1-23p. |
[34] | Djomene Y. S., Fon D. E., Foudjet A, E. & Feudjio D. C. 2016. Apport économique et valorisation de la culture des champignons comestibles au Cameroun. Revue Scientifique et Technique Fôret et Envirronnement Du Bassin Du Congo. 7: 65-72p. |
[35] | Reis F. S., Barros L., Martins A., & Ferreira I. C. F. R. 2012. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food and Chemical Toxicology. 50(2): 191-197p. |
[36] | Atila F., Owaid M. N., & Shariati M. A. 2017. The nutritional and medical benefits of Agaricus Bisporus: A review. Journal of Microbiology, Biotechnology and Food Sciences. 7(3): 281-286p. |
[37] | O’Dell T. H., Lodge D. J. & Mueller G. M. 2004. Approaches to Sampling Macrofingi. Inventory and monitoring methods, Mueller G. M., Bills G. F. & Foster M. S (Eds). New York: 163-168p. |
[38] | Kornerup A., Wanscher J. H., 1978. Metheun Handbook of colour. 3rd Edition, EYRE METHUEN, London, 252 p. |
[39] | Heim R., 1977. Termites et champignons. Les champignons termitophiles d’Afrique noire et d’Asie méridionale. Editions Boubée Paris, 205 p. |
[40] | Mossebo D. C., Amougou A., Atangana R. E., 2002. Contribution à l’étude du genre Termitomyces (Basidiomycètes) au Cameroun: écologie et systématique. Bulletin de la Société Mycologique de France. 118(3): 195-249. |
[41] | Association Française de Normalisation (AFNOR), 1982. Recueil des normes françaises des produits dérivés des fruits et légumes. Jus de fruits. 1er ed. Paris la défense (France). |
[42] | Dumas J. B. A., 1831. Procédés de l’analyse Organique. Annales de Chimie et de Physique (Annals of Chemistry and of Physics). 247, 198-213. |
[43] | Bourely J., 1982. Observation sur le dosage de l’huile des graines de cotonnier. Coton et Fibres Tropicales. 27: 183- 196. |
[44] | Association Française de Normalisation (AFNOR), 1981. Recueil des normes françaises. corps gras, graines oléagineuses, produits dérivés. AFNOR, Paris (France), 2ieme édition. |
[45] | Association of Official Analytical Chemists (A. O. A. C.), 1970. Official methods of analysis. 11th ed. Washington D. C. |
[46] | Atwater W. O. and Rosa E. B., 1899. A new respiratory calorimeter and the conservation of energy in human body, II - Physical Revue I (9) 214. |
[47] | Batra L. R. and Batra S. W. T., 1979. Termite-fungus mutualism. In Insect. Fungus Symbiosis: nutrition, mutualism and commensalism. Allanheld Osmun, New York., 117-163. |
[48] | Tibuhwa D. D. 2012. Antiradical and antioxidant activities of methanolic extracts of indigenous termitarian mushroom from Tanzania Antiradical and antioxidant activities of methanolic extracts of indigenous termitarian mushroom from Tanzania. Food Science and Quality Management. 7. 12p. |
[49] | Essouman E. P. F., 2018 Phylogénie moléculaire et révision taxonomique des Termitomyces (Lyophyllaceae, Basidiomycota) d’Afrique tropicale et d’Asie basées sur les séquences nLSU et mtSSU de l’ADNr et corrélation des paramètres de croissance post - récolte de Termitomyces schimperi Pat. Heim. Thèse, Université de Yaoundé 1, 195 p. |
[50] | De Kesel A., Kasongo B. & Degreef J. 2017. Champignons comestibles du Haut-Katanga (R.D. Congo). Abc Taxa. 17: 297p. |
[51] | Bernaś E., Jaworska G., & Lisiewska Z. 2006. Edible Mushrooms As a Source of Valuable Nutritive Constituents. Acta Scientiatiarum Polonorum Technologia Alimentaria. 5(1): 5-20. |
[52] | Manzi P., Aguzzi A., & Pizzoferrato L. 2001. Nutritional value of mushrooms widely consumed in Italy. Food Chemistry. 73(3): 321-325p. |
[53] | Yu Q., Guo M., Zhang B., Wu H., Zhang Y. and Zhang L. 2020. Analysis of Nutritional Composition in 23 Kinds of Edible Fungi. Journal of Food Quality. 4(3): 31-35p. |
[54] | Ouali Z., Chaar H., Venturella G., Gargano M. L., & Jaouani A. 2023. Composition chimique et valeur nutritionnelle de neuf champignons sauvages comestibles du Nord-Ouest de la Tunisie. Revue Italienne de Mycologie. 52. 32-49p. |
[55] | Institut de Recherche Agricole et de Developpement (IRAD), 2013. Contribution de la recherche à l’amélioration de la production et la consommation des légumineuses alimentaires au Cameroun, C2D/ Programme d’Appui à la Recherche Agronomique, Projet 6: Légumineuses, 57p. |
[56] | Corrêa R. C. G., Brugnari T., Bracht A., Peralta R. M., & Ferreira I. C. F. R. 2016. Biotechnological, nutritional and therapeutic uses of Pleurotus spp. (Oyster mushroom) related with its chemical composition: A review on the past decade findings. Trends in Food Science and Technology. 50: 103-117p. |
[57] | Herawati E., Arung E. T. & Amirta R. 2016. Domestication and Nutrient Analysis of Schizopyllum Commune, Alternative Natural Food Sources in East Kalimantan. Agriculture and Agricultural Science Procedia. 9: 291-296p. |
[58] | Nieto Ivonne. J. & Chegwin Carolina A. 2013. Effect of different substrates on triterpenoids and fatty acids in fungi of the genus Pleurotus. Journal of the Chilean Chemical Society, 58(1), 1580-1583p. |
[59] | Aletor V. A., 1995. Compositional studies on edible tropical species of mushrooms. Food Chemistry. 54(3): 265-268p. |
[60] | Nwagu U. L., & Obiakor O. P. N. 2014. Nutritional Profile of Three Different Mushroom Varieties Consumed in Amaifeke, Orlu Local Government Area, Imo State, Nigeria. Food Science and Quality Management. 31. 70-78p. |
[61] | Ravikrishnan V., Sanjeev Ganesh, & Madaiah Rajashekhar. 2017. Compositional and nutritional studies on two wild mushrooms from Western Ghat forests of Karnataka, India. International Food Research Journal. 24(2): 679-684p. |
[62] | Kumari N. and Srivastava A. K.(2020. Nutritional Analysis Of Some Wild Edible Mushrooms Collected From Ranchi District Jharkhand. International Journal of Recent Scientific Research. 11(3): 37670-37674p. |
[63] | Ishag Ibrahim Omer I., & Alfaig Alnoor Alfaig E. 2020. Chemical Composition and Nutritional Value of Some Type of Wild Mushrooms in Blue Nile State. International Journal of Food Science and Biotechnology. 5(2): 22p. |
[64] | Agbagwa S. S., Chuku E. C., Emiri U. N., and Nma V. W. 2022. Quality Assessment of Edible Ear Mushroom (Auricularia auricula-judae) found in Port Harcourt, Rivers State. Research Journal of Food Science and Quality Control. 8(1): 8-15p. |
[65] | Manjunathan J. and Kaviyarasan V. 2011. Nutrient composition in wild and cultivated edible mushroom, Lentinus tuber-regium (Fr.) Tamil Nadu., India. International Food Research Journal. 18(2): 809-811p. |
[66] | Magginioni A., and Renerto, 1970. Changes in composition of cultivated mushrooms (Agaricus bisporus) during the processing steps involved in caming and picking. Industrial Conservations. 45. |
[67] | Kansci G., Lele B. E. M., Fotso M., Fokou E., Tchouanguep M. F., 1999. Cameroon Bioscience Proceeding 6: 91-96. |
[68] | Chang S. T. & Milles, 1982. « Application and basic science partners, not competitors” in Informational Mushroom society for Tropics 4 (2). |
[69] | Kouadio N., Oka C., Kouamé A. C., Denis Y., Dri N., & Amani N. G. 2020. Évaluation nutritionnelle du champignon Pleurotus geesteranus issu de différentes périodes de récolte International Journal of Biological and Chemical Sciiences. 14(6): 1-10p. |
[70] | Satyaveer and Rajanna K. B., 2022. Health Benefits and Medicinal Value of Mushroom. Agriculture & Environment. 3(9): 13-17p. |
[71] | Rop O., Mlcek J., & Jurikova T. 2009. Beta-glucans in higher fungi and their health effects. Nutrition Reviews. 67(11): 624-631p. |
[72] | Titilawo M. A., Oluduro A. O., & Odeyemi O. 2020. Proximate and Chemical Properties of Some Underutilized Nigerian Wild Mushrooms. Journal of Microbiology Biotechnology and Food Sciences. 10(3): 390-397p. |
[73] | Januškevičius A., Januškevičiene G., & Andrulevičiute V. 2012. Chemical composition and energetic values of selected vegetable species in Lithuanian supermarkets. Veterinarija Ir Zootechnika. 58(80): 8-12p. |
[74] | Zakhary J. W., Abo-Bakr T. M., El-Mahdy A. R. & El-Tabey S. A. M. 1983. Chemical composition of wild mushrooms collected from Alexandria, Egypt. Food Chemistry. 11(1): 31-41p. |
[75] | Samsudin N. I. P., & Abdullah N. 2019. Edible mushrooms from Malaysia; a literature review on their nutritional and medicinal properties. International Food Research Journal. 26(1): 11-31p. |
[76] | Jacinto-Azevedo B., Valderrama N., Henríquez K., Aranda, M., & Aqueveque P. 2021. Nutritional value and biological properties of Chilean wild and commercial edible mushrooms. Food Chemistry. 356: 1-28p. |
[77] | Kadnikova I. A., Costa R., Kalenik T. K., Guruleva O. N., & Yanguo S. 2015. Chemical Composition and Nutritional Value of the Mushroom Auricularia auricula-judae. Journal of Food Nutrition and Research. 3(8): 478-482p. |
[78] | F. A. O., 1970. Table de composition des aliments à l’usage de l’Afrique, Rome. |
[79] | F. A. O., 1972. Food Composition Table for use in East Asia. Food Policy Food Nutri Div, FAO Rome. |
[80] |
Société Chinoise de Nutrition (SCN), 2022. Food Composition Database, Food Nutritional Composition Search,
https://nlc.chinanutri.cn/fq/ (accessed 12 September, 2022). |
[81] | Chapon A., Goutelle M., Rousson C., 2005. La valeur nutritive des champignons. Institut des sciences pharmaceutiques et biologiques. Faculté de pharmacie. Université Claude Bernard, Lyon. |
[82] | Demirbaş A. 2001. Concentrations of 21 metals in 18 species of mushrooms growing in the East Black Sea region. Food Chemistry. 75(4): 453-457p. |
[83] | Mattila P., Könkö K., Eurola M., Pihlava J. M., Astola J., Vahteristo L., Hietaniemi V., Kumpulainen J., Valtonen M., & Piironen V. 2001. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. Journal of Agricultural and Food Chemistry. 49(5): 2343-2348p. |
APA Style
Choupo, G., Metsebing, B. P., Mba, A. R. F., Ebouel, F. L. E., Oba, R., et al. (2025). Nutritional Profile of Some Wild Edible Mushrooms, Cultivated in Cameroon and Democratic Republic of Congo. Journal of Food and Nutrition Sciences, 13(3), 156-170. https://doi.org/10.11648/j.jfns.20251303.16
ACS Style
Choupo, G.; Metsebing, B. P.; Mba, A. R. F.; Ebouel, F. L. E.; Oba, R., et al. Nutritional Profile of Some Wild Edible Mushrooms, Cultivated in Cameroon and Democratic Republic of Congo. J. Food Nutr. Sci. 2025, 13(3), 156-170. doi: 10.11648/j.jfns.20251303.16
@article{10.11648/j.jfns.20251303.16, author = {Guifo Choupo and Blondo Pascal Metsebing and Aymar Rodrigue Fogang Mba and Ferdinand Lanvin Edoun Ebouel and Romuald Oba and Fabrice Tsigaing Tsigain and Gabriel Medoua Nama and Germain Kansci and Dominique Claude Mossebo and Zachée Ambang}, title = {Nutritional Profile of Some Wild Edible Mushrooms, Cultivated in Cameroon and Democratic Republic of Congo }, journal = {Journal of Food and Nutrition Sciences}, volume = {13}, number = {3}, pages = {156-170}, doi = {10.11648/j.jfns.20251303.16}, url = {https://doi.org/10.11648/j.jfns.20251303.16}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jfns.20251303.16}, abstract = {Wild edible mushrooms (WEM) are non-wood forest products that are widely used in the diets of many people in tropical Africa. In order to improve local diets and make the most of these natural resources, the nutritional quality of 28 wild and domesticated species in Cameroon and the Democratic Republic of Congo was analyzed. Measurements were taken of ash, water, carbohydrate, crude fiber, lipid, protein and energy content. The results indicate that these mushrooms are rich in lipids (11.75 g/100 g DM), proteins (25.89 g/100 g DM), crude fiber (13.91 g/100 g DM), water (86.82 g/100 g FM), ash (6.51 g/100 g DM), carbohydrates (27.57 g/100 g DM) and energy (324.13 kcal/100 g). Highly significant differences (P Termitomyces sp.5 (28.78 g/100 g DM) is rich in ash, while P. pulmonarius (28.52 g/100 g DM) stands out for its high lipid content and T. griseiumbo (49.38 g/100 g DM) has a remarkable level of protein. In terms of carbohydrates, P. ostreatus (55.51 g/100 g DM) stands out, while P. tuber-regium (26.79 g/100 g DM) has a notable proportion of crude fiber. In terms of energy, P. pulmonarius (459.76 kcal/100 g DM) still stands out. These results demonstrate the significant nutritional potential of these mushrooms, which are using to reduce nutritional deficiencies and facilitate intestinal transit thanks to their fiber content. Domestication of these mushrooms would also ensure continuous availability throughout the year, thereby reducing dependence on natural resources. }, year = {2025} }
TY - JOUR T1 - Nutritional Profile of Some Wild Edible Mushrooms, Cultivated in Cameroon and Democratic Republic of Congo AU - Guifo Choupo AU - Blondo Pascal Metsebing AU - Aymar Rodrigue Fogang Mba AU - Ferdinand Lanvin Edoun Ebouel AU - Romuald Oba AU - Fabrice Tsigaing Tsigain AU - Gabriel Medoua Nama AU - Germain Kansci AU - Dominique Claude Mossebo AU - Zachée Ambang Y1 - 2025/06/20 PY - 2025 N1 - https://doi.org/10.11648/j.jfns.20251303.16 DO - 10.11648/j.jfns.20251303.16 T2 - Journal of Food and Nutrition Sciences JF - Journal of Food and Nutrition Sciences JO - Journal of Food and Nutrition Sciences SP - 156 EP - 170 PB - Science Publishing Group SN - 2330-7293 UR - https://doi.org/10.11648/j.jfns.20251303.16 AB - Wild edible mushrooms (WEM) are non-wood forest products that are widely used in the diets of many people in tropical Africa. In order to improve local diets and make the most of these natural resources, the nutritional quality of 28 wild and domesticated species in Cameroon and the Democratic Republic of Congo was analyzed. Measurements were taken of ash, water, carbohydrate, crude fiber, lipid, protein and energy content. The results indicate that these mushrooms are rich in lipids (11.75 g/100 g DM), proteins (25.89 g/100 g DM), crude fiber (13.91 g/100 g DM), water (86.82 g/100 g FM), ash (6.51 g/100 g DM), carbohydrates (27.57 g/100 g DM) and energy (324.13 kcal/100 g). Highly significant differences (P Termitomyces sp.5 (28.78 g/100 g DM) is rich in ash, while P. pulmonarius (28.52 g/100 g DM) stands out for its high lipid content and T. griseiumbo (49.38 g/100 g DM) has a remarkable level of protein. In terms of carbohydrates, P. ostreatus (55.51 g/100 g DM) stands out, while P. tuber-regium (26.79 g/100 g DM) has a notable proportion of crude fiber. In terms of energy, P. pulmonarius (459.76 kcal/100 g DM) still stands out. These results demonstrate the significant nutritional potential of these mushrooms, which are using to reduce nutritional deficiencies and facilitate intestinal transit thanks to their fiber content. Domestication of these mushrooms would also ensure continuous availability throughout the year, thereby reducing dependence on natural resources. VL - 13 IS - 3 ER -