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3.1  Analytical Solutions 

An important objective in the design of a multi-stage axial turbine is to 

determine the optimal number of stages in the module and the distribution of 

heat drop between stages. 

Typically, a given quantity is the module’s heat drop, and should vary the 

number of stages and the rotational speed (diameter). It should be understood 

that the circumferential velocity reduction, and hence the diameters of the stages, 

reduces the disc friction losses, increase height of the blades (and therefore 

reduce the proportion of end losses), decrease the flow path leakage. At the 

same time it leads to an increase in the optimal number of stages, which causes 

an increase in losses due to discs friction and an additional amount of the 

turbine rotor elongation. Immediately aggravated questions of reliability and 

durability (the critical number of revolutions), materials consumption, increase 

cost of turbine production and power plant construction. 

A special place in the problem of the number of stages optimization is the 

correct assessment of the flow path shape influence, keeping its meridional 

disclosure in assessing losses in stages. As you know, the issue is most relevant 

for the powerful steam turbines LPC. It is therefore advisable for the problem of 

determining the optimal number of stages to be able to fix the form of the flow 

path for the LPC and at the same time to determine its optimal shape in the HPC 

and IPC. 

It should also be noted that the choice of the degree of reaction at the stages 

mean radius (the amount of heat drop also associated with it) must be carried 

out with a view to ensuring a positive value thereof at the root. Formulated in 

this section methods and algorithms: 
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 may serve as a basis for further improvement of the mathematical model 

and complexity of the problem with the accumulation of experience, 

methods and computer programs used in the algorithm to optimize the 

flow of the axial turbine; 

 allow the analysis of the influence of various factors on the optimal 

characteristics of the module, which gives reason for their widespread use 

in teaching purposes, the calculations for the understanding of the 

processes taking place in stages, to evaluate the impact of the various 

losses components on a stage operation; 

 allow to perform heat drop distribution between stages and to determine 

the optimal number of stages in a module within the modernization of the 

turbine, i.e. at fixed rotational speeds (diameters) and a given flow path 

shape or at the specified law or the axial velocity component change along 

the cylinder under consideration. 

A possible variant of the form setting of n stages group of the flow path can 

be carried out by taking the known axial and circumferential velocity 

components in all cross-sections, which the numbering will be carried out as 

shown in Fig. 3.1. 
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Figure 3.1  The sections numbering in the turbine flow part section,  

consisting of n stages. 

The axial velocity components we refer to the axial velocity at the entrance to 

the stages group: 

  0 , 1, 2jz jz zc K c j n  , (3.1) 

where jzK  – specified values. 

The shape of the flow path center line determined by the introduction of 

coefficient 

  0 , 1, 2jz jK u u j n  , (3.2) 

By satisfying the conditions (3.1), (3.2) after optimization using the 

continuity equation  0 0 0 , 1, 2z jz i jG c F c F j n     we can determine the 

shape of the flow path boundaries. 

Assuming that we know the initial parameters of the working fluid at the 

turbine module inlet and the outlet pressure, i.e. theoretical heat drop in the 

group of n stags is known. Thermal process in the group of stages with the help 

of hs-diagram is shown in the Fig. 3.2. 

Peripheral efficiency of the stages group determined by the formula 

Stage 1 Stage n Stage 2 Stage j 

3 2 1 0 4 2n – 2 2n 2n – 1 2j 2j – 1 2j – 2 

  

  
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or taking into account (3.1) and (3.2) in a dimensionless form according to the 

expression 

  2

0 0 2 1, 2 1, 2 1 2 , 2 , 2

1

2 ctg ctg
n

u z j u j z j j u j z j

j

c K K K K     



  , (3.3) 

where 
0 0 0u C  ; 

2

0 02C H ; 
0 0 0z zc c u . 

We take into account the loss in the blades by applying velocity coefficients 

 , , 1,j j j n   . Also, assume that the output of the intermediate stage a 

portion of the output energy may be lost. This fact will take into account by 

introducing a factor by which the output loss is defined as 
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Figure 3.2  The thermal process in the hs-diagram for the group of n stages. 
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by introducing a factor by which the output loss is defined as 

       
2

2
, 0 1; 1,

2

jj j j

out out out

c
h K K j n     , (3.4) 

Calculating losses in the guide vane and the rotor by formulas 

     
2 2 2 2

2 1 2

2 2

1 1
, , 1,

2 2

j j j jj j

s r

j j

c w
h h j n

 
 

 

 
    

taking into account the factor of heat recovery n , the limit for the heat drop in 

the group of n stages can be written as: 

           
21
2

3 0

1 1 1

1 0
2

n n n
j j j j n

n u s r out

j j j

c
A H L h h h   



  

          . (3.5) 

Dividing equation (3.5) by 
2
0u , taking into account (3.1), (3.2), as well as 

well-known kinematic correlations between velocity and flow angles after 

obvious transformations we obtain an expression for the limitation 3A  in the 

dimensionless form: 

 

   

    

3 0 2 1, 2 1, 2 1 2 , 2 , 2

1

2 2

2 2 2 2 2 2

2 1, 0 2 1 2 , 0 22 2
1

1
2 2 2 2

2 , 2 , 0 2 2 , 2 , 0 2

1

2 ctg ctg

1 1
1 ctg 1 ctg

2 ctg 1 ctg

n

z j u j z j j u j z j

j

n
j j

j z z j j z z j

j j j

n
j

j u j z z j j u out j z z j

j

A c K K K K

K c K c

K K c K K K c

 

 
 

 

 

  



 







  

        


    







 

  
 2 2 2

2 , 2 2

0

1
1 ctg 0

n

n z oz nK c






    . (3.6) 

The task of definition of the angles j  so that, given the parameters 

 0 0, , , , 1, 2z ju jzc K K j n   and taken on the basis of some considerations (or 

defined by one of the possible methods), the quantities of velocity coefficients 
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   , , , 1,
j

j j outK j n    reaches its objective function (3.3) maximum and 

satisfies the constraint (3.6). 

Mathematically the formulated problem reduces to finding: 

 

 1

ctg
0

max , 1, 2
j

n
j

u

j

u

L

j n
H




 


 

under the constraint (3.6). 

Using the penalty functions method, you can reduce the problem of finding 

the extremum in the presence of constraints to the problem without limitation 

for the attached objective function 

 
* 2

3uI A   , (3.7) 

where   – penalty coefficient. 
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Figure 3.3  The thermal process in hs-diagram for an intermediate j-th stage. 

Given the values of the velocity coefficients ,j j   along the module, 

solution of the problem is simplified due to the possibility of its decision by 

indefinite Lagrange multipliers method. Differentiating the Lagrange function 

by variables  ctg , 1, 2j j n   

 3uL A   , (3.8) 

where   – Lagrange multiplier, we find the following necessary optimality 

conditions 
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   

2

2 ,

0 22 2 2

0 2 ,

11 1 1
ctg , 1, 1

j zj j

out z j

j j j u

K
K c j n

K




   

  
       

  
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; (3.10) 

 
2 ,

0 22 2

0 2 ,

1 1
1 ctg

n z

z n

n n u

K
c

K


  

 
   

 
 

. (3.11) 

Expressing all  ctg 2j j n   through
2ctg n , and excluding   according 

to the third formula, we get: 

  
2

2 1, 2 ,

2 1 2

2 1, 0 2 ,

11
ctg ctg , 1,

j u n zn
j n

j j z z n u

K K
j n

K c K


 









 
   

 
 

; (3.12) 

   
2 2

2 , 2 ,

2 222
2 , 0 2 ,

1
ctg ctg , 1, 1

j u n zn j

j nj

j z j z n uj n out

K K
j n

K c KK

 
 

 

 
    

   

, 

Where 

2

2

2

1 j

j n

j


 




 ; 

2

2

2

1 j

j n

j


 




 . 

Substituting found in this manner 2 1ctg j   and 2ctg j  in the equation (3.6), 

we get the quadratic equation in the parameter 2ctg opt

n  

 
2

2 2ctg ctg 0opt opt

n nD E F    , (3.13) 

where 

 

2 2 22 1
2 , 2 1, 2 , 2

2 ,2 2
1 12 ,

n n
n z j u j uoz

n uj
j jn u n j j n out

K K Kc
D K

K K   




 

 
   
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 

2 21
2 , 2 1, 2 , 2

2 ,2 2
1 12 ,

2
n n

n z j u j uoz
n uj

j jn u n j j n out

K K Kc
E K
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


 

 
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Using the solution of this equation, then define all the optimal angles 

 ctg 1, 2 1opt

j j n    with (3.12), as well as optimal efficiency as a function of 

the set parameters with the help of (3.3). 

Consider the important special case when , , 1j u j zK K  ; 

   ; 1, 1
j

out outK K j n   ;  , , 1,j j j n      . In this case, the formula 

(3.12) will have the form 
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 (3.14) 

Where 

2
2

2

1 
 




 . 

After the substitution of (3.14) into (3.6) we have a quadratic equation of the 

form (3.15) with the following values of the coefficients: 

 
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2 2

1
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D
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2 2
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, 

of which there is an optimal value 2ctg n , then  ctg 1, 2 1j j n    and from 

(3.13) the optimal efficiency 
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, (3.15) 

optimal velocity ratios of the stages 
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optimal reactions 
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  

2 2 2 2

0 2 1

2 2 2

0 2 2

1 ctg

1 1 ctg 1

z j j

z j out j

c
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



 

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. (3.17) 

If adopted above conditions, we see that all the stages except the last, are the 

same. The final stage is different from all that is connected with the need to 

reduce the exit velocity loss that is completely lost at this stage 
  1
n

outK  . 

Using formulas (3.14)–(3.17) for values 
2 0.96  , 

2 0.9   over a wide 

range 
0 zc  from 0.2 to 1.0 and 

outK  from 0 to 1 the calculations were carried out, 

the results of which at values 
0 0.4zc   and 0.1outK   are shown in Fig. 3.4. 
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Calculations have shown that for each value 
0 0u C  , i.e. heat drop for a 

given amount 
0H  at a fixed circumferential speed u, an optimum number of 

stages exists at which the maximum efficiency of the module is reached. 

 

Figure 3.4  The calculated optimal exit flow angles , velocity ratios  of intermediate 

and last stages, module efficiency  for different values of the heat drops  

(
0 0.4zc  , 

2 0.96  , 
2 0.9  , 0.1outK  ;  1, 1j n  ). The numbers on the curves 

indicate the number of stages in the module. The bold line shows the envelope of the 

parameters, corresponding to the maximum efficiency. 

Assuming full utilization of the output velocity of the intermediate stages 

 0outK   the rotor exit angles of the intermediate stages  2 j j n   can be 

very different from 90. 
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The last stage flow exit angle 
2n  in accordance with the calculation results 

must be done close to 90, which corresponds with a minimum loss of output 

velocity. Angles downstream of the guide vanes lie in the range 10...17, the 

optimum value of the velocity ratio in the range of 0.48...0.58. With increasing 

of number of stages in the module the range of acceptable changes of these 

values is narrowed. 

In the case of output velocity loss in the intermediate stages  0outK   the 

picture somewhat changes. Increases the value of the heat drop, in which it is 

advisable to go to a larger number of stages, angles downstream of the 

intermediate stages 2 j  are also close to 90. There is a decrease in the velocity 

ratio values j , the exit flow angles of the guide vanes 2 1j  , resulting in a 

slight drop in the optimum degree of reaction for the intermediate and for the 

last stages. 

In the case of a single stage, assuming n = 1 peripheral stage efficiency is 

given by 

1 1 2 2

*

0 0 2

u u u
u

TT

L u c u c

h i i



 


. 

From (3.3) we obtain in the dimensionless form 

  2

0 0 1 1 1 2 2 22 ctg ctgu z z u z u zc K K K K     . (3.18) 

For restrictions 1A , 2A  and 3A  from equations (3.13), (3.6) is written (see 

notation on Fig. 3.1): 
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

     

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. (3.19) 
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Drawing on the kinematic relations between velocities and flow angles, using 

the velocity triangles have 
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. (3.20) 
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0

1 1
0uK



 


   . (3.22) 

Here for convenience introduced a dimensionless ratio 

 
0

0

*

C

a
  , (3.23) 

where 
0C  – stage inlet velocity defined by zc0  and 0 ; 

*

* 0

1
2

1

k
a i

k





 – 

velocity, equivalent to the critical value, for the ideal working fluid. 

In the case of a perfect gas 
0  is a reduced velocity at the stage inlet. 

The stage optimization problem is solved using conjugate gradient method by 

maximizing the attached objective function 
* 2

3uI A   , where  – penalty 

coefficient. 
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In the case of fixed velocity ratios  and  from (3.12) we obtain the 

relationship between 1

opt  and 2

opt  analytically 

 
2

1 2
1 2

1 0 2

1 1
ctg ctgopt optu z

z z u

K K

K c K


 



 
  

 
, (3.24) 

where denoted 

2
2

2

1 
 




 . 

To determine the 
opt
2ctg  is needed to use the quadratic equation (3.13), 

which coefficients in the case of single stage are given by: 
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. 

The reaction degree R of single stage is given by: 
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 
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 
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 


. (3.25) 

In the case where  and  are functions of flow parameters, for a single stage 

the solution of the problem of determining the optimal parameters can be 

simplified by using the method of successive approximations: 

1. Set the initial approximation ,  and define the parameters for the stage 

using derived formulas. 
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2. The velocity coefficients are recalculated according to the obtained 

parameters and calculations are renewed from the item 1. 

Calculations have shown that this process converges with high accuracy in a 

few iterations. 

To investigate the influence of dimensionless parameters on the optimum 

stage performance computational study was conducted under various 

assumptions about the loss in the stage. The velocity coefficients were taken 

into account as a constant or dependent of the flow parameters. In the latter case, 

their determination was made using simplified dependency [28] with a bit 

increased losses on the rotor blades: 

 

2
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2

2

1 0.025 1 ;
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1 0.040 1 .
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     

. (3.26) 

The increase in losses on the rotor blades in the presence of negative degree 

of reaction produced artificially by the formula 
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 (3.27) 

The most complete calculations are made for the important special case when 

 1 1, 2jz juK K j   . 

Computational study has allowed to determine the optimal parametric 

dependencies of efficiency, angles 
1  and 

2 , reaction R, velocity coefficients 
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,  and loss factors , ,s r out    on 
0 zc  and 

0 . The calculation results are 

shown in Fig. 3.5–3.7. 

 

Figure 3.5  Optimal characteristics of the turbine stage (
2 0.96  , 

2 0.9  ).  

The numbers refer to zc0  values. Circles mark the optimal parameters  

at optimal heat drop in the stage. 
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Figure 3.6  Optimal characteristics of the turbine stage with velocity ratio, calculated 

by the formula (3.26). The numbers refer to 
0zc  values. Circles mark the optimal 

parameters at optimal heat drop in the stage. 
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Figure 3.7  Optimal characteristics of the turbine stage (,  calculated by the formula 

(3.26)) with  recalculated according to (3.27). The numbers refer to 
0zc  values. 

Circles mark the optimal parameters at optimal heat drop in the stage. 

3.2  Preliminary Design of the Multistage Axial Flow 

Turbine Method Description 

In the early stages of the flow path (FP) design of the turbine, when 

determined the diameter, the blade heights, heat drops and other main 
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characteristics of the stages, required to study alternatives with a view to the 

design solution, in the best sense of a quality criterion. 

Most effectively, this problem is solved within the created turbine flow path 

CAD systems, because manage: to achieve a rational division of the designer, 

defining the strategy and computer, quickly and accurately perform complex 

calculations and presents the results in human readable numeric or graphical 

form; to take into account many different factors influencing the efficiency, 

reliability, manufacturability, cost and other indicators of the quality of the 

design being created; organize dialogue or fully automatic determination of 

optimal parameters, etc [29]. 

Most methods of the multi-stage turbine parameters optimization is designed 

to select the number of gas-dynamic and geometric parameters on the basis of 

the known prototype, the characteristics of which are taken as the initial 

approximation. 

When using complex mathematical models, a large number of variables and 

constraints, the solution of such problems requires considerable computer time 

and for the purposes of CAD that require quick response of the system is often 

unacceptable. 

It is desirable to have a method of design that combines simplicity, reliability 

and speed of obtaining results with an accuracy of the mathematical model, a 

large number of factors taken into account and optimized, the depth of finding 

the optimal variant. This inevitably certain assumptions, the most important of 

which are: the synthesis parameters of "good", competitive structure without 

attracting accurate calculation models; in-depth analysis and refinement of the 

parameters are not taken into account at the first stage; optimization of the basic 

parameters by repeatedly performing the steps of the synthesis and analysis. 
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Design of the FP in such a formulation will be called preliminary (PD). PD 

does not claim to such a detailed optimization of parameters, as in the        

above-mentioned methods of optimal design. Its goal – to offer a workable, 

effective enough design, the characteristics of which, if necessary, can be 

selected as the initial approximation for more accurate calculations. 

Major challenges in creating a PD method are: 

 a rational approach to the problem of the preliminary design, the selection 

of the quality criteria and the constraints system; 

 development of a method for the multi-stage flow path basic parameters 

selection; 

 formation of requirements for a mathematical models complex describing 

different aspects of turbines and their efficient numerical implementation; 

 selection of the appropriate algorithm for finding the optimal solution; 

 a flexible software creation for a dialog based solution of the design 

problems in various statements and visual representation of the results. 

It is assumed that FP PD will be conducted immediately after the calculation 

of the turbine thermal cycle under known for each of the cylinders steam 

parameters * *

0 0,i P  at the inlet, the backpressures for modules 2 jP , mass flows jG  

 mod1, ,j n  and rotor frequency . 

The task is selecting the number of stages in the modules jn , root diameter 

hjD  and stages blades heights so as to achieve the maximum power of the 

cylinder, while ensuring reliability, manufacturability, or any other (material 

consumption, cost, size, etc.) pre-specified requirements. 

The minimum acceptable reliability limits regulated (including safety factors) 

by static stresses in the blades and diaphragms, as well as detuning rotor blades 
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of constant cross-section of the resonance. Technological constraints are 

reduced to a certain FP embodiment, task specific surface finish, as well as the 

use of standardized components – profiles, shanks, etc. 

Common to powerful steam turbines HPC and IPC is the requirement of 

blading unification, when all stages are formed by trimming the top of the 

nozzle and rotor blades of the last stage of the module. At the same time it 

maintained a constant root diameter, angles 
1h  and 

2h , as well as the root 

degree of reaction 
hR  at the uniform heat drops distribution between the stages 

and the constant axial velocity component in sections. 

Consider ways of forming the cylinder FP, consisting of sections, satisfying, 

in particular, the above requirements of the unification. The idea of the method 

repeatedly expressed earlier. We apply it to the computer-aided FP design and 

make some modifications and generalizations. 

3.2.1  Methods of the FP Synthesis 

Consider one of the formulations of the PD problems, which we call the task 

I, in relation to the module. 

Suppose that the root diameter 
hD , root degree of reaction 

hR  and angle 
1h  

are known. The nozzle and rotor blades are considered to be twisted by law 

constuc r  , which gives: 

 
1 1 2 2ctg const; tg constr r   , (3.28) 

and to change the degree of reaction along the radius the relation is applicable 
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2 2
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or the approximate formula [10] 
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. (3.29) 

First of all, the estimated process of steam expansion in the module is build. 

As we know neither the number nor the geometrical characteristics of the stages, 

it can be done only very approximately, evaluating the module efficiency 
im , 

such as by method [30]. This makes it possible to find the parameters of steam 

at the end of the actual process of expansion and, taking this process as linear, 

to evaluate the thermodynamic parameters at any pressure 

*

2 , mod 0nP P P  . 

To select the number of stages in the module let allow approximately uniform 

breakdown of the heat drops by the stages. Then, by setting the velocity ratio 

0u C  or evaluating its "optimal" (i.e. corresponding to the axial outlet flow 

from the stage – 
2  = 90) value, for example, by the formula [10] 
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, (3.30) 

you can get 
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, (3.31) 

where 
0H  – module disposable heat drop; 

inc  – velocity at the inlet of the 

module; n – stage number – rounded up to the nearest integer. 

Velocity 
inc , which is equal to the axial component is determined by taking 

into account (3.30) according to the formula 
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  2
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where  is assumed equal to 0.96...0.98. 

Introducing the notation 

mod
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i S
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on the proposed steam expansion process for each of the stages the parameters 

in the gap between vanes without much error is determined based on the 

relationships: 
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 (3.33) 

     *

1 1 0, 1 1j j mji i P S j S R S      , (3.34) 

  1 1 1, , 1, ,j j jP i j n   . (3.35) 

Pressures downward the stages are equal 

2
* *

2 0 0,
2

in
j

c
P P i j i S j S 

 
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 
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Nozzle vanes heights are determined from the continuity equation 

  1 1 1 1j j h j j zG l D l c   , (3.36) 

where 
1zc  taken from (3.32). 
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Solving (3.36) as a quadratic equation, we find 
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Since the value of mjR , entering into (3.33)–(3.35), depends on the height of 

the blades, the iterative refinement of all the values determined by formulas 

(3.29), (3.33)–(3.35), (3.37) is needed. Taking as an initial approximation 

0hR  typically achieve convergence of 2–4 iterations. 

Instead of 
1h  may be set, for example, the ratio 

mD l  of the 1-st stage. We 

call this formulation as the problem II. In this case, immediately we find the 

height of the blades of the 1-st stage 

1

1

h

m

D
l

D

l





 

and the 1-st stage degree of reaction at the mean radius using (3.29). 

Angle 
1  of the 1-st stage is determined based on the continuity equation 

  1 1 1 1 1sin mG c D l l   , (3.38) 

the obvious relation 
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and the conditions (3.30), what after simple calculations gives 
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Furthermore, deleting 0C  from (3.39) using (3.30), we obtain 
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The most advantageous number of stages in a module is determined by (3.31). 

Otherwise method II does not differ from the method I. 

With the introduction of the coefficient 

1 ,z n

z

in

c
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c
  

methods I and II can be generalized to the case where the axial velocity 

components linearly vary from stage to stage. For this purpose, in the equations 

(3.33), (3.36) and (3.37) 
1zc  should be replaced by the value 
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It should be borne in mind that when 1zK   the blade system unification 

condition (
1 consth  , 

2 consth  ) is not satisfied. 

Thus, as a result of solving PD problems in the statement I (II) certain basic 

characteristics of the FP are defined: the number of stages n, stages counter-

pressures 2 jP , root – level reaction degrees 
hR , root diameter 

hD , height of 

nozzle vanes 1 jl , angles h1  (ratio 
mD l  of the 1-st stage). 

3.2.2  Detailed Thermal Calculation 

Next, to a more accurate assessment of the created design quality criteria and 

calculation of all required parameters is proposed to solve the inverse one-

dimensional problem of thermal calculation of the FP for each of the stages of 

the cylinder. Known at this point data is not enough for this calculation. 
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Additionally, you need to specify the height of rotor blades, the geometric 

characteristics of the cascades, seals, etc. 

Selection of missing values must be based on the design adopted, strength, 

technological and other requirements. For example, the height of the rotor blade 

can be obtained on the ground of information about the standard overlap or 

through the strict implementation of the conditions 
2 consth   in the group of 

stages. Using standard profiles data or generalized dependencies for the profile 

characteristics of arbitrary shape allows you to create a cascade, satisfying the 

requirements of efficiency, reliability and manufacturability. Selection of the 

main cascade parameters (a chord, stagger angle, pitch, etc.) it is advisable to 

carry out during the refinement of the velocity coefficients of crowns in the   

one-dimensional inverse problem of the FP thermal calculation. It’s quite a 

complicated independent problem which deserves special consideration. 

The results of this calculation are the kinematic parameters of the flow in the 

gaps, the effective angles, cascade’s components of the kinetic energy loss and 

power parameters of stages. It also calculated the magnitude of stresses in the 

elements of design, weight, size and other characteristics. This information is 

sufficient to draw a conclusion about the quality of the built structure and the 

need to continue the design process. 

A proximity in the selection of the basic FP parameters in the first PD stage 

compensated with the detailed account of the most factors affecting the quality 

parameters of the turbine in the model of thermal calculation. However, it 

should be borne in mind that during the synthesis of the FP should be set a 

number of parameters which are precisely determined only at the second 

calculation step. Therefore, there may be some differences in the parameters 

0 2 , mod, , iu C   . 
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The most significant differences between the set and the refined 
1h  value, 

which can reach 0.5...1.0 or more because of the stages number rounding to the 

nearest integer in the formula (3.31) and, as a consequence, the deflection 
0u C  

in the formula (3.30) from the optimum. For this reason, and also because of 

methodologically inappropriate to set as the initial parameter, which 

subsequently must be determined (angle 
1h ), the PD problem formulation II 

seems more rational. 

3.2.3  Optimization 

The desire to automate the PD process leads to the development of an 

algorithm for finding the optimal combination of the basic parameters of the flow 

path. With regard to the formulation II it is , , ,h h h mD R D l  of the 1-st stage, and 

in case of failure of the unification – also 
zK . The total number of variables to 

variable cylinder consisting of 
mn  modules thus does not exceed 

mod5n . 

They imposed restrictions 
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min max
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min max

min max

min max

;

;

;

;

.

h h h

h h h

h h h
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D D D
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D l D l D l
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  

 


  


  


 

  

 (3.42) 

When selecting cascade’s profiles during the detailed thermal calculation 

may be presented restrictions on static strength of the diaphragm and the rotor 

blades of the type 

    , (3.43) 

design 
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1 1 min

2 2 min

max

;

;

h h

h h

n n

 

 

 


 
 

 (3.44) 

and other. 

To automatically design the FP, optimal in terms of the selected quality 

criteria, the designer must specify ranges of variable parameters and the 

required number of points in the search space defined by the conditions (3.42). 

Sampling points generation is conducted using the LP sequences. 

Clarification of the optimal solution is achieved by reducing the ranges in the 

search. Typically, the amount of the search points ranges from a few dozen to 

several hundreds. Since the synthesis and thermal design of one point takes a 

few seconds, the maximum time to find the optimal variant is not more than a 

few minutes on a standard PC. 
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