| Peer-Reviewed

Progress on Immunopathogenesis of Hepatic Fibrosis by Schistosome Infections

Received: 10 August 2020    Accepted:     Published: 23 September 2020
Views:       Downloads:
Abstract

Schistosomiasis is a widespread zoonosis. It seriously threats human health. Schistosomiasis is caused by schistosomes, which belong to Schistosoma genus, a kind of blood-dwelling fluke worms, mainly living in the venus portal-mesenteric system of human by digenetic intravascular parasite. People who infected by schistosomes may appear the symptoms with abdominal pain, diarrhea, anemia, and splenomegaly, progressing from egg-granulomas eventually to hepatic fibrosis. This review describes hepatic fibrosis caused by schistosomes, Clonorchis sinensis and Toxoplasma gondii, Capillaria hepatica and hydatid, mainly focused on the hepatic fibrosis caused by S. mansoni and S. japonicum. T helper (Th) cells (Th1, Th2, Th17 and Treg cells) play an important role in the process of anti-schistosomiasis infection and immune regulation. Especially, the balance of Th1/Th2, Th17/Treg is closely related to the development of hepatic fibrosis. Th2 and Th17 cells can promote the granuloma formation by the secretion of IL-4 and IL-17 respectively; while Th1 and Treg cells can suppress the granuloma formation. These CD4+ T cell subsets are in complicated cross-talk in schistosomiasis immunity. Hepatic fibrosis caused by these parasites are also the key and difficult points of prevention and treatment of parasitic diseases, with further study about their molecular mechanism will provide us more thinking about parasitic effective prevention and treatment.

Published in Science Journal of Public Health (Volume 8, Issue 5)
DOI 10.11648/j.sjph.20200805.12
Page(s) 141-148
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Hepatic Fibrosis, Schistosoma mansoni, Schistosoma japonicum, Other Parasites, Th1 and Th2, Th17 and Treg

References
[1] D. G. Colley, A. L. Bustinduy, W. E. Secor, and C. H. King, "Human schistosomiasis," The Lancet, vol. 383, pp. 2253-2264, 2014.
[2] A. H. A. Hegazy, L. A. Galal, T. M. Hassan, and R. M. A. Khalifa, "Reliability of heterophyid antigens in heterologous protection against human schistosomiasis," J Parasit Dis, vol. 44, pp. 349-354, Jun 2020.
[3] Z. Xu, M. Ji, C. Li, X. Du, W. Hu, D. P. McManus, et al., "A Biological and Immunological Characterization of Schistosoma Japonicum Heat Shock Proteins 40 and 90alpha," Int J Mol Sci, vol. 21, Jun 4 2020.
[4] A. Tiruneh, D. Kahase, E. Zemene, E. Tekalign, A. Solomon, and Z. Mekonnen, "Identification of transmission foci of Schistosoma mansoni: narrowing the intervention target from district to transmission focus in Ethiopia," BMC Public Health, vol. 20, p. 769, May 24 2020.
[5] E. K. Lackey and S. Horrall, "Schistosomiasis (Schistosoma Haematobium)," in StatPearls, ed Treasure Island (FL), 2020.
[6] C. C. Alves, N. Araujo, G. D. Cassali, and C. T. Fonseca, "Parasitological, Pathological, and Immunological Parameters Associated with Schistosoma mansoni Infection and Reinfection in BALB/c AND C57BL/6 Mice," J Parasitol, vol. 102, pp. 336-41, Jun 2016.
[7] G. M. Kaatano, D. Y. Min, J. E. Siza, T. S. Yong, J. Y. Chai, Y. Ko, et al., "Schistosoma mansoni-Related Hepatosplenic Morbidity in Adult Population on Kome Island, Sengerema District, Tanzania," Korean J Parasitol, vol. 53, pp. 545-51, Oct 2015.
[8] C. Chuah, M. K. Jones, M. L. Burke, D. P. McManus, and G. N. Gobert, "Cellular and chemokine-mediated regulation in schistosome-induced hepatic pathology," Trends Parasitol, vol. 30, pp. 141-50, Mar 2014.
[9] M. L. Burke, D. P. McManus, G. A. Ramm, M. Duke, Y. Li, M. K. Jones, et al., "Temporal expression of chemokines dictates the hepatic inflammatory infiltrate in a murine model of schistosomiasis," PLoS Negl Trop Dis, vol. 4, p. e598, Feb 09 2010.
[10] J. Shen, L. Wang, M. Peng, Z. Liu, B. Zhang, T. Zhou, et al., "Recombinant Sj16 protein with novel activity alleviates hepatic granulomatous inflammation and fibrosis induced by Schistosoma japonicum associated with M2 macrophages in a mouse model," Parasit Vectors, vol. 12, p. 457, Sep 23 2019.
[11] M. L. Burke, M. K. Jones, G. N. Gobert, Y. S. Li, M. K. Ellis, and D. P. McManus, "Immunopathogenesis of human schistosomiasis," Parasite Immunol, vol. 31, pp. 163-76, Apr 2009.
[12] X. Ma, D. Sun, C. Li, J. Ying, and Y. Yan, "Chronic hepatitis B virus infection and preterm labor (birth) in pregnant women-an updated systematic review and meta-analysis," J Med Virol, Aug 29 2017.
[13] L. Finci, S. Mouraux, J. Knuchel, and L. Bochatay, "[Initial management of new onset ascites in patient with cirrhosis]," Rev Med Suisse, vol. 13, pp. 1509-1515, Sep 06 2017.
[14] S. Klein, R. Schierwagen, F. E. Uschner, and J. Trebicka, "Mouse and rat models of induction of hepatic fibrosis and assessment of portal hypertension," in Fibrosis, ed: Springer, 2017, pp. 91-116.
[15] E. Albanis and S. L. Friedman, "Hepatic fibrosis. Pathogenesis and principles of therapy," Clin Liver Dis, vol. 5, pp. 315-34, v-vi, May 2001.
[16] M. J. Stadecker, H. Asahi, E. Finger, H. J. Hernandez, L. I. Rutitzky, and J. Sun, "The immunobiology of Th1 polarization in high-pathology schistosomiasis," Immunol Rev, vol. 201, pp. 168-79, Oct 2004.
[17] E. J. Pearce and A. S. MacDonald, "The immunobiology of schistosomiasis," Nat Rev Immunol, vol. 2, pp. 499-511, Jul 2002.
[18] L. H. Glimcher and K. M. Murphy, "Lineage commitment in the immune system: the T helper lymphocyte grows up," Genes Dev, vol. 14, pp. 1693-711, Jul 15 2000.
[19] K. M. Murphy and S. L. Reiner, "The lineage decisions of helper T cells," Nat Rev Immunol, vol. 2, pp. 933-44, Dec 2002.
[20] S. Sakaguchi, "Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses," Annu. Rev. Immunol., vol. 22, pp. 531-562, 2004.
[21] N. J. Wilson, K. Boniface, J. R. Chan, B. S. McKenzie, W. M. Blumenschein, J. D. Mattson, et al., "Development, cytokine profile and function of human interleukin 17-producing helper T cells," Nat Immunol, vol. 8, pp. 950-7, Sep 2007.
[22] A. Kimura and T. Kishimoto, "IL-6: regulator of Treg/Th17 balance," Eur J Immunol, vol. 40, pp. 1830-5, Jul 2010.
[23] H. M. Coutinho, L. P. Acosta, H. W. Wu, S. T. McGarvey, L. Su, G. C. Langdon, et al., "Th2 cytokines are associated with persistent hepatic fibrosis in human Schistosoma japonicum infection," J Infect Dis, vol. 195, pp. 288-95, Jan 15 2007.
[24] X.-P. Cai, H. Zhang, Y.-C. Zhang, Y. Wang, C. Su, M.-J. Ji, et al., "Dynamics of CD4+ CD25+ T cells in spleens and mesenteric lymph nodes of mice infected with Schistosoma japonicum," Acta biochimica et biophysica Sinica, vol. 38, pp. 299-304, 2006.
[25] A. Ning, X. Wu, H. Li, J. Liang, Z. Gao, J. Shen, et al., "Abnormal liver function in different patients with Schistosoma japonicum," Parasitology research, vol. 114, pp. 85-90, 2015.
[26] J. Shen, L. Xu, Z. Liu, N. Li, L. Wang, Z. Lv, et al., "Gene expression profile of LPS-stimulated dendritic cells induced by a recombinant Sj16 (rSj16) derived from Schistosoma japonicum," Parasitology research, vol. 113, pp. 3073-3083, 2014.
[27] Z. A. Andrade, "Warren Ks: Mild Prolonged Schistosomiasis in Mice: Alterations in Host Response with Time and the Development of Portal Fibrosis," Trans R Soc Trop Med Hyg, vol. 58, pp. 53-7, Jan 1964.
[28] S. A. Araujo, P. Neves, D. C. Wanderley, M. A. D. Reis, C. B. Dias, D. Malheiros, et al., "The immunohistological profile of membranous nephropathy associated with chronic Schistosoma mansoni infection reveals a glomerulopathy with primary features," Kidney Int, vol. 96, pp. 793-794, Sep 2019.
[29] Z. A. Andrade, "Schistosomal hepatopathy," Mem Inst Oswaldo Cruz, vol. 99, pp. 51-7, 2004.
[30] M. Kirinoki, M. Hu, H. Yokoi, Y. Chigusa, and H. Matsuda, "Immunoblot analysis of Schistosoma japonicum egg antigens with sera from patients with acute and chronic schistosomiasis japonica," Southeast Asian J Trop Med Public Health, vol. 34, pp. 702-7, Dec 2003.
[31] A. W. Cheever, "A quantitative post-mortem study of Schistosomiasis mansoni in man," Am J Trop Med Hyg, vol. 17, pp. 38-64, Jan 1968.
[32] B. Gryseels and A. M. Polderman, "The morbidity of schistosomiasis mansoni in Maniema (Zaire)," Trans R Soc Trop Med Hyg, vol. 81, pp. 202-9, 1987.
[33] A. W. Cheever, "Comparison of pathologic changes in mammalian hosts infected with Schistosoma mansoni, S. japonicum and S. haematobium," Mem Inst Oswaldo Cruz, vol. 82 Suppl 4, pp. 39-45, 1987.
[34] B. L. Blas, B. D. Cabrera, A. T. Santos, Jr., and J. S. Nosenas, "An attempt to study the case fatality rate in Schistosoma japonicum infection in the Philippines," Southeast Asian J Trop Med Public Health, vol. 17, pp. 67-70, Mar 1986.
[35] S. Y. Hsu, H. F. Hsu, J. R. Davis, and G. L. Lust, "Comparative studies on the lesions caused by eggs of Schistosoma japonicum and Schistosoma mansoni in livers of albino mice and rhesus monkeys," Ann Trop Med Parasitol, vol. 66, pp. 89-97, Mar 1972.
[36] F. Von Lichtenberg, D. G. Erickson, and E. H. Sadun, "Comparative histopathology of schistosome granulomas in the hamster," Am J Pathol, vol. 72, pp. 149-78, Aug 1973.
[37] S. Li, Y. B. Chung, B. S. Chung, M. H. Choi, J. R. Yu, and S. T. Hong, "The involvement of the cysteine proteases of Clonorchis sinensis metacercariae in excystment," Parasitol Res, vol. 93, pp. 36-40, May 2004.
[38] T. I. Kim, W. G. Yoo, B. K. Kwak, J. W. Seok, and S. J. Hong, "Tracing of the Bile-chemotactic migration of juvenile Clonorchis sinensis in rabbits by PET-CT," PLoS Negl Trop Dis, vol. 5, p. e1414, Dec 2011.
[39] J. Chen, M. J. Xu, D. H. Zhou, H. Q. Song, C. R. Wang, and X. Q. Zhu, "Canine and feline parasitic zoonoses in China," Parasit Vectors, vol. 5, p. 152, Jul 28 2012.
[40] C. Yan, L. Wang, B. Li, B. B. Zhang, B. Zhang, Y. H. Wang, et al., "The expression dynamics of transforming growth factor-beta/Smad signaling in the liver fibrosis experimentally caused by Clonorchis sinensis," Parasit Vectors, vol. 8, p. 70, Feb 4 2015.
[41] S. T. Hong and Y. Fang, "Clonorchis sinensis and clonorchiasis, an update," Parasitol Int, vol. 61, pp. 17-24, Mar 2012.
[42] B. I. Yoon, Y. K. Choi, D. Y. Kim, B. H. Hyun, K. H. Joo, H. J. Rim, et al., "Infectivity and pathological changes in murine clonorchiasis: comparison in immunocompetent and immunodeficient mice," J Vet Med Sci, vol. 63, pp. 421-5, Apr 2001.
[43] Y. K. Choi, B. I. Yoon, Y. S. Won, C. H. Lee, B. H. Hyun, H. C. Kim, et al., "Cytokine responses in mice infected with Clonorchis sinensis," Parasitol Res, vol. 91, pp. 87-93, Sep 2003.
[44] D. E. Hill, S. Chirukandoth, and J. P. Dubey, "Biology and epidemiology of Toxoplasma gondii in man and animals," Anim Health Res Rev, vol. 6, pp. 41-61, Jun 2005.
[45] Y. Sukthana, "Toxoplasmosis: beyond animals to humans," Trends Parasitol, vol. 22, pp. 137-42, Mar 2006.
[46] U. Frevert, S. Engelmann, S. Zougbede, J. Stange, B. Ng, K. Matuschewski, et al., "Intravital observation of Plasmodium berghei sporozoite infection of the liver," PLoS Biol, vol. 3, p. e192, Jun 2005.
[47] H. T. Atmaca, A. N. Gazyagci, S. Canpolat, and O. Kul, "Hepatic stellate cells increase in Toxoplasma gondii infection in mice," Parasit Vectors, vol. 6, p. 135, May 4 2013.
[48] M. M. de Souza, L. M. Silva, A. A. Barbosa, Jr., I. R. de Oliveira, R. Parana, and Z. A. Andrade, "Hepatic capillariasis in rats: a new model for testing antifibrotic drugs," Braz J Med Biol Res, vol. 33, pp. 1329-34, Nov 2000.
[49] A. Dubey, A. Bagchi, D. Sharma, A. Dey, K. Nandy, and R. Sharma, "Hepatic Capillariasis- Drug Targets," Infect Disord Drug Targets, vol. 18, pp. 3-10, 2018.
[50] N. Bhutani and P. Kajal, "Hepatic echinococcosis: A review," Ann Med Surg (Lond), vol. 36, pp. 99-105, Dec 2018.
[51] P. Grenard, S. Bresson-Hadni, S. El Alaoui, M. Chevallier, D. A. Vuitton, and S. Ricard-Blum, "Transglutaminase-mediated cross-linking is involved in the stabilization of extracellular matrix in human liver fibrosis," J Hepatol, vol. 35, pp. 367-75, Sep 2001.
[52] G. Ya-Min, Z. Wen-Jun, Z. Shun-Yun, H. Xiu-Min, and X. Zheng-Guang, "[Surgical treatment strategy for complex hepatic echinococcosis: a review]," Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi, vol. 30, pp. 705-708, Jul 2 2018.
[53] M. Aliakbarian, F. Tohidinezhad, S. Eslami, and K. Akhavan-Rezayat, "Liver transplantation for hepatic alveolar echinococcosis: literature review and three new cases," Infect Dis (Lond), vol. 50, pp. 452-459, Jun 2018.
[54] Y. Liu, G. Abudounnasier, T. Zhang, X. Liu, Q. Wang, Y. Yan, et al., "Increased Expression of TGF-beta1 in Correlation with Liver Fibrosis during Echinococcus granulosus Infection in Mice," Korean J Parasitol, vol. 54, pp. 519-25, Aug 2016.
[55] P. L. Fidel, Jr. and D. L. Boros, "Regulation of granulomatous inflammation in murine schistosomiasis. V. Antigen-induced T cell-derived suppressor factors down-regulate proliferation and IL-2, but not IL-4, production by CD4+ effector T cells," J Immunol, vol. 146, pp. 1941-8, Mar 15 1991.
[56] Y. L. Ma, F. J. Huang, L. Cong, W. C. Gong, H. M. Bai, J. Li, et al., "IL-4-Producing Dendritic Cells Induced during Schistosoma japonica Infection Promote Th2 Cells via IL-4-Dependent Pathway," J Immunol, vol. 195, pp. 3769-80, Oct 15 2015.
[57] N. Noben-Trauth, J. Hu-Li, and W. E. Paul, "IL-4 secreted from individual naive CD4+ T cells acts in an autocrine manner to induce Th2 differentiation," European journal of immunology, vol. 32, pp. 1428-1433, 2002.
[58] S. G. Zheng, "Regulatory T cells vs Th17: differentiation of Th17 versus Treg, are the mutually exclusive?" Am J Clin Exp Immunol, vol. 2, pp. 94-106, 2013.
[59] S. F. Ziegler and J. H. Buckner, "FOXP3 and the regulation of Treg/Th17 differentiation," Microbes Infect, vol. 11, pp. 594-8, Apr 2009.
[60] Y. Yang, P. Dong, J. Zhao, W. Zhou, Y. Zhou, Y. Xu, et al., "PKCλ/ι regulates Th17 differentiation and house dust mite-induced allergic airway inflammation," Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, vol. 1864, pp. 934-941, 2018.
[61] C.-S. Hsieh, S. E. Macatonia, C. S. Tripp, S. F. Wolf, A. O'GARRA, and K. M. Murphy, "Development of TH1 CD4+ T cells through IL-12 produced by listeria-induced macrophages," The Journal of immunology, vol. 181, pp. 4437-4439, 2008.
[62] A. O'Garra and N. Arai, "The molecular basis of T helper 1 and T helper 2 cell differentiation," Trends Cell Biol, vol. 10, pp. 542-50, Dec 2000.
[63] J. Q. Yang, K. W. Kalim, Y. Li, S. Zhang, A. Hinge, M. D. Filippi, et al., "RhoA orchestrates glycolysis for TH2 cell differentiation and allergic airway inflammation," J Allergy Clin Immunol, vol. 137, pp. 231-245 e4, Jan 2016.
[64] T. A. Wynn, A. W. Cheever, D. Jankovic, R. W. Poindexter, P. Caspar, F. A. Lewis, et al., "An IL-12-based vaccination method for preventing fibrosis induced by schistosome infection," Nature, vol. 376, pp. 594-6, Aug 17 1995.
[65] W. Zhou, Y. Yang, C. Mei, P. Dong, S. Mu, H. Wu, et al., "Inhibition of Rho-Kinase Downregulates Th17 Cells and Ameliorates Hepatic Fibrosis by Schistosoma japonicum Infection," Cells, vol. 8, Oct 16 2019.
[66] Y. L. Cheng, W. J. Song, W. Q. Liu, J. H. Lei, Z. Kong, and Y. L. Li, "The effects of interleukin (IL)-12 and IL-4 deficiency on worm development and granuloma formation in Schistosoma japonicum-infected mice," Parasitol Res, vol. 110, pp. 287-93, Jan 2012.
[67] X. Long, Q. Chen, J. Zhao, N. Rafaels, P. Mathias, H. Liang, et al., "An IL-13 promoter polymorphism associated with liver fibrosis in patients with Schistosoma japonicum," PLoS One, vol. 10, p. e0135360, 2015.
[68] T. A. Wynn, R. W. Thompson, A. W. Cheever, and M. M. Mentink-Kane, "Immunopathogenesis of schistosomiasis," Immunol Rev, vol. 201, pp. 156-67, Oct 2004.
[69] M. H. Meevissen, M. Wuhrer, M. J. Doenhoff, G. Schramm, H. Haas, A. M. Deelder, et al., "Structural characterization of glycans on omega-1, a major Schistosoma mansoni egg glycoprotein that drives Th2 responses," J Proteome Res, vol. 9, pp. 2630-42, May 07 2010.
[70] E. J. Pearce, P. Caspar, J. M. Grzych, F. A. Lewis, and A. Sher, "Pillars article: downregulation of Th1 cytokine production accompanies induction of Th2 responses by a parasitic helminth, Schistosoma mansoni. J. Exp. Med. 1991. 173: 159-166," J Immunol, vol. 189, pp. 1104-11, Aug 01 2012.
[71] A. T. Vella and E. J. Pearce, "CD4+ Th2 response induced by Schistosoma mansoni eggs develops rapidly, through an early, transient, Th0-like stage," J Immunol, vol. 148, pp. 2283-90, Apr 01 1992.
[72] K. F. Hoffmann, P. Caspar, A. W. Cheever, and T. A. Wynn, "IFN-gamma, IL-12, and TNF-alpha are required to maintain reduced liver pathology in mice vaccinated with Schistosoma mansoni eggs and IL-12," J Immunol, vol. 161, pp. 4201-10, Oct 15 1998.
[73] S. M. Wahl, M. Frazier-Jessen, W. W. Jin, J. B. Kopp, A. Sher, and A. W. Cheever, "Cytokine regulation of schistosome-induced granuloma and fibrosis," Kidney Int, vol. 51, pp. 1370-5, May 1997.
[74] I. O. Farah, P. W. Mola, T. M. Kariuki, M. Nyindo, R. E. Blanton, and C. L. King, "Repeated exposure induces periportal fibrosis in Schistosoma mansoni-infected baboons: role of TGF-beta and IL-4," J Immunol, vol. 164, pp. 5337-43, May 15 2000.
[75] H. Park, Z. Li, X. O. Yang, S. H. Chang, R. Nurieva, Y.-H. Wang, et al., "A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17," Nature immunology, vol. 6, p. 1133, 2005.
[76] L. E. Harrington, R. D. Hatton, P. R. Mangan, H. Turner, T. L. Murphy, K. M. Murphy, et al., "Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages," Nature immunology, vol. 6, pp. 1123-1132, 2005.
[77] W. Ouyang, J. K. Kolls, and Y. Zheng, "The biological functions of T helper 17 cell effector cytokines in inflammation," Immunity, vol. 28, pp. 454-67, Apr 2008.
[78] T. Korn, E. Bettelli, M. Oukka, and V. K. Kuchroo, "IL-17 and Th17 Cells," Annu Rev Immunol, vol. 27, pp. 485-517, 2009.
[79] E. Hoe, J. Anderson, J. Nathanielsz, Z. Q. Toh, R. Marimla, A. Balloch, et al., "The contrasting roles of Th17 immunity in human health and disease," Microbiol Immunol, vol. 61, pp. 49-56, Feb 2017.
[80] K. Chen and J. K. Kolls, "Interluekin-17A (IL17A)," Gene, vol. 614, pp. 8-14, May 30 2017.
[81] J. Q. Yang, M. Leitges, A. Duran, M. T. Diaz-Meco, and J. Moscat, "Loss of PKC lambda/iota impairs Th2 establishment and allergic airway inflammation in vivo," Proc Natl Acad Sci U S A, vol. 106, pp. 1099-104, Jan 27 2009.
[82] C. A. Murphy, C. L. Langrish, Y. Chen, W. Blumenschein, T. McClanahan, R. A. Kastelein, et al., "Divergent pro-and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation," Journal of Experimental Medicine, vol. 198, pp. 1951-1957, 2003.
[83] S. Aggarwal, N. Ghilardi, M.-H. Xie, F. J. de Sauvage, and A. L. Gurney, "Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17," Journal of Biological Chemistry, vol. 278, pp. 1910-1914, 2003.
[84] D. J. Cua, J. Sherlock, Y. Chen, and C. A. Murphy, "Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain," Nature, vol. 421, p. 744, 2003.
[85] L. I. Rutitzky, J. R. Lopes da Rosa, and M. J. Stadecker, "Severe CD4 T cell-mediated immunopathology in murine schistosomiasis is dependent on IL-12p40 and correlates with high levels of IL-17," J Immunol, vol. 175, pp. 3920-6, Sep 15 2005.
[86] P. M. Smith, M. G. Shainheit, L. E. Bazzone, L. I. Rutitzky, A. Poltorak, and M. J. Stadecker, "Genetic control of severe egg-induced immunopathology and IL-17 production in murine schistosomiasis," J Immunol, vol. 183, pp. 3317-23, Sep 1 2009.
[87] L. Zhou, Ivanov, II, R. Spolski, R. Min, K. Shenderov, T. Egawa, et al., "IL-6 programs T (H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways," Nat Immunol, vol. 8, pp. 967-74, Sep 2007.
[88] Y. Zhang, D. Huang, W. Gao, J. Yan, W. Zhou, X. Hou, et al., "Lack of IL-17 signaling decreases liver fibrosis in murine schistosomiasis japonica," Int Immunol, vol. 27, pp. 317-25, Jul 2015.
[89] D. Chen, X. Luo, H. Xie, Z. Gao, H. Fang, and J. Huang, "Characteristics of IL-17 induction by Schistosoma japonicum infection in C57BL/6 mouse liver," Immunology, vol. 139, pp. 523-32, Aug 2013.
[90] W. Chen, W. Jin, N. Hardegen, K.-j. Lei, L. Li, N. Marinos, et al., "Conversion of peripheral CD4+ CD25− naive T cells to CD4+ CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3," Journal of Experimental Medicine, vol. 198, pp. 1875-1886, 2003.
[91] S. Fu, N. Zhang, A. C. Yopp, D. Chen, M. Mao, D. Chen, et al., "TGF-β Induces Foxp3+ T-Regulatory Cells from CD4+ CD25− Precursors," American Journal of Transplantation, vol. 4, pp. 1614-1627, 2004.
[92] S. Sakaguchi, T. Yamaguchi, T. Nomura, and M. Ono, "Regulatory T cells and immune tolerance," Cell, vol. 133, pp. 775-87, May 30 2008.
[93] S. Sakaguchi, M. Miyara, C. M. Costantino, and D. A. Hafler, "FOXP3+ regulatory T cells in the human immune system," Nat Rev Immunol, vol. 10, pp. 490-500, Jul 2010.
[94] M. Noval Rivas and T. A. Chatila, "Regulatory T cells in allergic diseases," J Allergy Clin Immunol, vol. 138, pp. 639-652, Sep 2016.
[95] X. Wen, L. He, Y. Chi, S. Zhou, J. Hoellwarth, C. Zhang, et al., "Dynamics of Th17 cells and their role in Schistosoma japonicum infection in C57BL/6 mice," PLoS Negl Trop Dis, vol. 5, p. e1399, Nov 2011.
[96] K. P. Singh, H. C. Gerard, A. P. Hudson, T. R. Reddy, and D. L. Boros, "Retroviral Foxp3 gene transfer ameliorates liver granuloma pathology in Schistosoma mansoni infected mice," Immunology, vol. 114, pp. 410-7, Mar 2005.
[97] C.-L. Tang, J.-H. Lei, F. Guan, Y.-L. Li, R. Liu, C. G. Grevelding, et al., "Effect of cytotoxic T-lymphocyte-associated protein 4 on CD4+ CD25+ regulatory T cells in murine Schistosomiasis japonica," Experimental parasitology, vol. 136, pp. 74-78, 2014.
Cite This Article
  • APA Style

    Congjin Mei. (2020). Progress on Immunopathogenesis of Hepatic Fibrosis by Schistosome Infections. Science Journal of Public Health, 8(5), 141-148. https://doi.org/10.11648/j.sjph.20200805.12

    Copy | Download

    ACS Style

    Congjin Mei. Progress on Immunopathogenesis of Hepatic Fibrosis by Schistosome Infections. Sci. J. Public Health 2020, 8(5), 141-148. doi: 10.11648/j.sjph.20200805.12

    Copy | Download

    AMA Style

    Congjin Mei. Progress on Immunopathogenesis of Hepatic Fibrosis by Schistosome Infections. Sci J Public Health. 2020;8(5):141-148. doi: 10.11648/j.sjph.20200805.12

    Copy | Download

  • @article{10.11648/j.sjph.20200805.12,
      author = {Congjin Mei},
      title = {Progress on Immunopathogenesis of Hepatic Fibrosis by Schistosome Infections},
      journal = {Science Journal of Public Health},
      volume = {8},
      number = {5},
      pages = {141-148},
      doi = {10.11648/j.sjph.20200805.12},
      url = {https://doi.org/10.11648/j.sjph.20200805.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjph.20200805.12},
      abstract = {Schistosomiasis is a widespread zoonosis. It seriously threats human health. Schistosomiasis is caused by schistosomes, which belong to Schistosoma genus, a kind of blood-dwelling fluke worms, mainly living in the venus portal-mesenteric system of human by digenetic intravascular parasite. People who infected by schistosomes may appear the symptoms with abdominal pain, diarrhea, anemia, and splenomegaly, progressing from egg-granulomas eventually to hepatic fibrosis. This review describes hepatic fibrosis caused by schistosomes, Clonorchis sinensis and Toxoplasma gondii, Capillaria hepatica and hydatid, mainly focused on the hepatic fibrosis caused by S. mansoni and S. japonicum. T helper (Th) cells (Th1, Th2, Th17 and Treg cells) play an important role in the process of anti-schistosomiasis infection and immune regulation. Especially, the balance of Th1/Th2, Th17/Treg is closely related to the development of hepatic fibrosis. Th2 and Th17 cells can promote the granuloma formation by the secretion of IL-4 and IL-17 respectively; while Th1 and Treg cells can suppress the granuloma formation. These CD4+ T cell subsets are in complicated cross-talk in schistosomiasis immunity. Hepatic fibrosis caused by these parasites are also the key and difficult points of prevention and treatment of parasitic diseases, with further study about their molecular mechanism will provide us more thinking about parasitic effective prevention and treatment.},
     year = {2020}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Progress on Immunopathogenesis of Hepatic Fibrosis by Schistosome Infections
    AU  - Congjin Mei
    Y1  - 2020/09/23
    PY  - 2020
    N1  - https://doi.org/10.11648/j.sjph.20200805.12
    DO  - 10.11648/j.sjph.20200805.12
    T2  - Science Journal of Public Health
    JF  - Science Journal of Public Health
    JO  - Science Journal of Public Health
    SP  - 141
    EP  - 148
    PB  - Science Publishing Group
    SN  - 2328-7950
    UR  - https://doi.org/10.11648/j.sjph.20200805.12
    AB  - Schistosomiasis is a widespread zoonosis. It seriously threats human health. Schistosomiasis is caused by schistosomes, which belong to Schistosoma genus, a kind of blood-dwelling fluke worms, mainly living in the venus portal-mesenteric system of human by digenetic intravascular parasite. People who infected by schistosomes may appear the symptoms with abdominal pain, diarrhea, anemia, and splenomegaly, progressing from egg-granulomas eventually to hepatic fibrosis. This review describes hepatic fibrosis caused by schistosomes, Clonorchis sinensis and Toxoplasma gondii, Capillaria hepatica and hydatid, mainly focused on the hepatic fibrosis caused by S. mansoni and S. japonicum. T helper (Th) cells (Th1, Th2, Th17 and Treg cells) play an important role in the process of anti-schistosomiasis infection and immune regulation. Especially, the balance of Th1/Th2, Th17/Treg is closely related to the development of hepatic fibrosis. Th2 and Th17 cells can promote the granuloma formation by the secretion of IL-4 and IL-17 respectively; while Th1 and Treg cells can suppress the granuloma formation. These CD4+ T cell subsets are in complicated cross-talk in schistosomiasis immunity. Hepatic fibrosis caused by these parasites are also the key and difficult points of prevention and treatment of parasitic diseases, with further study about their molecular mechanism will provide us more thinking about parasitic effective prevention and treatment.
    VL  - 8
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Institute of Parasitic Diseases, Wuxi, China

  • Sections