American Journal of Polymer Science and Technology

| Peer-Reviewed |

Study of Biodegradation of Film Materials with D-Cycloserine Based on Polyurethaneurea and the Dynamics of Drug Release

Received: 1 October 2019    Accepted: 26 October 2019    Published: 8 November 2019
Views:       Downloads:

Share This Article

Abstract

The study of the ability to biodegradation of film materials with D-cycloserine obtained on the basis of polyurethaneurea with fragments of the copolymer of N-vinylpyrrolidone with vinyl acetate and vinyl alcohol, and 1.6-hexamethylenediamine in the structure under the influence of biological medium 199 for 1, 3 and 6 months were conducted. IR spectroscopy and physical-mechanical tests of these film materials before and after incubation in biological medium 199 were investigated. According to research results, there are decrease of the tensile strength (in 1.29-2.50 times) and a relative elongation at break (in 1.15-1.91 times) after incubation in biological medium 199. It is established that under the influence of biological medium 199 there are processes of biodegradation of film materials. The introduction of D-cycloserine into the composition of polyurethaneurea contributes to their biodegradation. It allows us to conclude that biodegradation is due to release of D-cycloserine. The study of the dynamics of D-cycloserine release from the polymer matrix was conducted by spectrophotometric method. The amount of drug varies depending on the copolymer content in structure of film materials (75.00-96.71% of the total amount of the introduced drug). It has been established that the studied film materials are capable to the prolonged release of D-cycloserine. It allows using them as film coatings for medicine with different ability to release of drug depending on requirements.

DOI 10.11648/j.ajpst.20190504.11
Published in American Journal of Polymer Science and Technology (Volume 5, Issue 4, December 2019)
Page(s) 97-104
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Polyurethaneurea, D-Cycloserine, N-vinylpyrrolidone Copolymer, Model Biological Medium 199, Biodegradation

References
[1] Rudenchyk T., Rozhnova R., Galatenko N. Hydrophylic polyurethaneurea containing the copolymer of N-vinylpyrrolidone, vinyl acetate and vinyl alcohol for possible biomedical use. Advances in Biochemistry, 5, 73-78 (2017).
[2] Rudenchyk T. V., Rozhnova R. A., Galatenko N. A., Kiselova T. O. Hydrophilic polyurethane ureas with cycloserine which contain in their structure the fragments of a copolymer of N-vinylpyrrolidone with vinyl alcohol: synthesis and characterization. Voprosy Khimii i Khimicheskoi Tekhnologii, No. 5, 49-57 (2017).
[3] Makadia H. K., Siegel S. J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel), 3, 1377–1397 (2011).
[4] Ansary R. H., Awang M. B., Rahman M. M. Biodegradable poly (D, L-lactic-co-glycolic acid) -based micro/nanoparticles for sustained release of protein drugs - A review. Tropical Journal of Pharmaceutical Research, 13, 1179-1190 (2014).
[5] Alexis F. Factors affecting the degradation and drug-release mechanism of poly (lactic acid) and poly [(lactic acid)-co-(glycolic acid)]. Polymer International, 54, 36–46 (2005).
[6] Chakraborty S., Khandai M., Sharma A., Patra Ch., Patro V., Sen K. Effects of drug solubility on the release kinetics of water soluble and insoluble drugs from HPMC based matrix formulations. Acta Pharmaceutica, 59, 313–323 (2009).
[7] Reza M. S., Quadir M. A., Haider S. S. Comparative evaluation of plastic, hydrophobic and hydrophilic polymers as matrices for controlled-release drug delivery. Journal of Pharmacy and Pharmaceutical Sciences, 6, 282-291 (2003).
[8] Anepu S., Duppala L., Pratyusha P. V. Development of hydrophobic carriers based tablets for sustained release of verapamil. Journal of Applied Pharmaceutical Science, 5, 125-134 (2015).
[9] Brazel C. S., Peppas N. A. Mechanisms of solute and drug transport in relaxing, swellable, hydrophilic glassy polymers. Polymer, 40, 3383–3398 (1999).
[10] Ali T., Shoaib M. H., Yousuf R. I., Jabeen S., Muhammad I. N., Tariq A. Use of hydrophilic and hydrophobic polymers for the development of controlled release tizanidine matrix tablets. Brazilian Journal of Pharmaceutical Sciences, 50, 779-818 (2014).
[11] Nisha S., Mathew G., Lincy J. Matrix tablets: an effective way for oral controlled release drug delivery. Iranian Journal of Pharmaceutical Sciences, 8, 165-170 (2012).
[12] Varma M. V., Kaushal A. M., Garg A., Garg S. Factors affecting mechanism and kinetics of drug release from matrix-based oral controlled drug delivery systems. American Journal of Drug Delivery, 2, 43-57 (2004).
[13] Tiwari S. B., Rajabi-Siahboomi A. R. Extended-release oral drug delivery technologies: monolithic matrix systems. In: ‘Drug Delivery Systems’ Vol. 437. Methods in molecular biology (Ed.: Jain K. K.) Humana Press, Totowa, NJ 217-243 (2008).
[14] Pretsch E., Bёllmann P., Affolter C. Structure determination of organic compounds. Tables of spectral data. Springer-Verlag Berlin Heidelberg New York (2000).
[15] Amann M., Minge O. Biodegradability of Poly (vinyl acetate) and Related Polymers. Advances in Polymer Science, 245, 137–172 (2012).
[16] Chiellini E., Corti A., D’Antone S., Solaro R. Biodegradation of poly (vinyl alcohol) based materials. Progress in Polymer Science, 28, No. 6, 963-1014 (2003).
[17] Rudenchyk T. V., Rozhnova R. A., Galatenko N. A., Nechaeva L. Yu. The effects of the model biological medium on the structure and properties of composite materials with levamisole and the dynamics of the release of a drug substance. Voprosy Khimii i Khimicheskoi Tekhnologii, No. 5, 140-148 (2018).
[18] Rudenchyk T., Rozhnova R., Galatenko N., Narazhayko L., Rudenko A. Study of biodegradation, biocompatibility and bactericidal activity of film materials with tiamulin fumarate based on polyurethaneurea. Chemistry & Chemical Technology, in press.
[19] Gottlieb D., Shaw P. D. Antibiotics: Volume I Mechanism of action. Springer-Verlad Berlin Heidelberg New York (1967).
[20] Grayson M. L., Crowe S. M., McCarthy J. S., Mills J., Mouton J. W., Norrby S. R., Paterson D. L., Pfaller M. A. Kucers' the use of antibiotics. Sixth Edition: A Clinical Review of Antibacterial, Antifungal, Antiparasitic and Antiviral Drugs, Vol. 1. (2010).
[21] Zhang Y., Yew W-W. Mechanisms of drug resistance in mycobacterium tuberculosis: update 2015. The International Journal of Tuberculosis and Lung Disease, 19, 1276–1289 (2015).
[22] Kulyesh D. V., Rudenchyk T. V., Roznova R. A., Narozhayko L. F., Pinchuk V. D., Kebuladze I. M., Popova N. M. Research and development biocompatibility of composite polymeric materials with cycloserine for medicine. Plastic, Reconstructive and Aesthetic Surgery, No. 1-2, 42-52 (2017).
[23] Cycloserine. Tuberculosis, 88, 100–101 (2008).
[24] Sakka N. El, Gould I. M. Role of old antimicrobial agents in the management of urinary tract infection. Expert Review of Clinical Pharmacology, 9, 1047-1056 (2016).
[25] Brunton L., Lazo J., Parker K. Goodman & gilman's the pharmacological basis of therapeutics. McGraw-Hill, New York (2005).
[26] Somaraju V. Drugs used in tuberculosis and leprosy. In ‘Modern pharmacology with clinical applications’ (6th edn) (eds.: Craig C. R., Stitzel R. E.) Lippincott Williams & Wilkins, Philadelphia, 557-566 (2003).
[27] Baum E. Z., Crespo-Carbone S. M., Foleno B. D., Simon L. D., Guillemont J., Macielag M., Bush K. MurF inhibitors with antibacterial activity: Effect on muropeptide levels. Antimicrobial Agents and Chemotherapy, 53, 3240–3247 (2009).
[28] Vemula H., Ayon N. J., Burton A., Gutheil W. G. Antibiotic effects on methicillin resistant staphylococcus aureus cytoplasmic peptidoglycan intermediate levels and evidence for potential metabolite level regulatory loops. Antimicrobial Agents and Chemotherapy, 61, e02253-16 (2017).
Cite This Article
  • APA Style

    Tetiana Rudenchyk, Rita Rozhnova, Nataliia Galatenko, Lіudmyla Nechaeva. (2019). Study of Biodegradation of Film Materials with D-Cycloserine Based on Polyurethaneurea and the Dynamics of Drug Release. American Journal of Polymer Science and Technology, 5(4), 97-104. https://doi.org/10.11648/j.ajpst.20190504.11

    Copy | Download

    ACS Style

    Tetiana Rudenchyk; Rita Rozhnova; Nataliia Galatenko; Lіudmyla Nechaeva. Study of Biodegradation of Film Materials with D-Cycloserine Based on Polyurethaneurea and the Dynamics of Drug Release. Am. J. Polym. Sci. Technol. 2019, 5(4), 97-104. doi: 10.11648/j.ajpst.20190504.11

    Copy | Download

    AMA Style

    Tetiana Rudenchyk, Rita Rozhnova, Nataliia Galatenko, Lіudmyla Nechaeva. Study of Biodegradation of Film Materials with D-Cycloserine Based on Polyurethaneurea and the Dynamics of Drug Release. Am J Polym Sci Technol. 2019;5(4):97-104. doi: 10.11648/j.ajpst.20190504.11

    Copy | Download

  • @article{10.11648/j.ajpst.20190504.11,
      author = {Tetiana Rudenchyk and Rita Rozhnova and Nataliia Galatenko and Lіudmyla Nechaeva},
      title = {Study of Biodegradation of Film Materials with D-Cycloserine Based on Polyurethaneurea and the Dynamics of Drug Release},
      journal = {American Journal of Polymer Science and Technology},
      volume = {5},
      number = {4},
      pages = {97-104},
      doi = {10.11648/j.ajpst.20190504.11},
      url = {https://doi.org/10.11648/j.ajpst.20190504.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpst.20190504.11},
      abstract = {The study of the ability to biodegradation of film materials with D-cycloserine obtained on the basis of polyurethaneurea with fragments of the copolymer of N-vinylpyrrolidone with vinyl acetate and vinyl alcohol, and 1.6-hexamethylenediamine in the structure under the influence of biological medium 199 for 1, 3 and 6 months were conducted. IR spectroscopy and physical-mechanical tests of these film materials before and after incubation in biological medium 199 were investigated. According to research results, there are decrease of the tensile strength (in 1.29-2.50 times) and a relative elongation at break (in 1.15-1.91 times) after incubation in biological medium 199. It is established that under the influence of biological medium 199 there are processes of biodegradation of film materials. The introduction of D-cycloserine into the composition of polyurethaneurea contributes to their biodegradation. It allows us to conclude that biodegradation is due to release of D-cycloserine. The study of the dynamics of D-cycloserine release from the polymer matrix was conducted by spectrophotometric method. The amount of drug varies depending on the copolymer content in structure of film materials (75.00-96.71% of the total amount of the introduced drug). It has been established that the studied film materials are capable to the prolonged release of D-cycloserine. It allows using them as film coatings for medicine with different ability to release of drug depending on requirements.},
     year = {2019}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Study of Biodegradation of Film Materials with D-Cycloserine Based on Polyurethaneurea and the Dynamics of Drug Release
    AU  - Tetiana Rudenchyk
    AU  - Rita Rozhnova
    AU  - Nataliia Galatenko
    AU  - Lіudmyla Nechaeva
    Y1  - 2019/11/08
    PY  - 2019
    N1  - https://doi.org/10.11648/j.ajpst.20190504.11
    DO  - 10.11648/j.ajpst.20190504.11
    T2  - American Journal of Polymer Science and Technology
    JF  - American Journal of Polymer Science and Technology
    JO  - American Journal of Polymer Science and Technology
    SP  - 97
    EP  - 104
    PB  - Science Publishing Group
    SN  - 2575-5986
    UR  - https://doi.org/10.11648/j.ajpst.20190504.11
    AB  - The study of the ability to biodegradation of film materials with D-cycloserine obtained on the basis of polyurethaneurea with fragments of the copolymer of N-vinylpyrrolidone with vinyl acetate and vinyl alcohol, and 1.6-hexamethylenediamine in the structure under the influence of biological medium 199 for 1, 3 and 6 months were conducted. IR spectroscopy and physical-mechanical tests of these film materials before and after incubation in biological medium 199 were investigated. According to research results, there are decrease of the tensile strength (in 1.29-2.50 times) and a relative elongation at break (in 1.15-1.91 times) after incubation in biological medium 199. It is established that under the influence of biological medium 199 there are processes of biodegradation of film materials. The introduction of D-cycloserine into the composition of polyurethaneurea contributes to their biodegradation. It allows us to conclude that biodegradation is due to release of D-cycloserine. The study of the dynamics of D-cycloserine release from the polymer matrix was conducted by spectrophotometric method. The amount of drug varies depending on the copolymer content in structure of film materials (75.00-96.71% of the total amount of the introduced drug). It has been established that the studied film materials are capable to the prolonged release of D-cycloserine. It allows using them as film coatings for medicine with different ability to release of drug depending on requirements.
    VL  - 5
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Department of Polymers of Medical Appointment, Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

  • Department of Polymers of Medical Appointment, Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

  • Department of Polymers of Medical Appointment, Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

  • Sections